📄 rfc2553.txt
字号:
Gilligan, et. al. Informational [Page 6]RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999 struct in6_addr { union { uint8_t _S6_u8[16]; uint32_t _S6_u32[4]; uint64_t _S6_u64[2]; } _S6_un; }; #define s6_addr _S6_un._S6_u83.3 Socket Address Structure for 4.3BSD-Based Systems In the socket interface, a different protocol-specific data structure is defined to carry the addresses for each protocol suite. Each protocol- specific data structure is designed so it can be cast into a protocol- independent data structure -- the "sockaddr" structure. Each has a "family" field that overlays the "sa_family" of the sockaddr data structure. This field identifies the type of the data structure. The sockaddr_in structure is the protocol-specific address data structure for IPv4. It is used to pass addresses between applications and the system in the socket functions. The following sockaddr_in6 structure holds IPv6 addresses and is defined as a result of including the <netinet/in.h> header:struct sockaddr_in6 { sa_family_t sin6_family; /* AF_INET6 */ in_port_t sin6_port; /* transport layer port # */ uint32_t sin6_flowinfo; /* IPv6 traffic class & flow info */ struct in6_addr sin6_addr; /* IPv6 address */ uint32_t sin6_scope_id; /* set of interfaces for a scope */}; This structure is designed to be compatible with the sockaddr data structure used in the 4.3BSD release. The sin6_family field identifies this as a sockaddr_in6 structure. This field overlays the sa_family field when the buffer is cast to a sockaddr data structure. The value of this field must be AF_INET6. The sin6_port field contains the 16-bit UDP or TCP port number. This field is used in the same way as the sin_port field of the sockaddr_in structure. The port number is stored in network byte order.Gilligan, et. al. Informational [Page 7]RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999 The sin6_flowinfo field is a 32-bit field that contains two pieces of information: the traffic class and the flow label. The contents and interpretation of this member is specified in [1]. The sin6_flowinfo field SHOULD be set to zero by an implementation prior to using the sockaddr_in6 structure by an application on receive operations. The sin6_addr field is a single in6_addr structure (defined in the previous section). This field holds one 128-bit IPv6 address. The address is stored in network byte order. The ordering of elements in this structure is specifically designed so that when sin6_addr field is aligned on a 64-bit boundary, the start of the structure will also be aligned on a 64-bit boundary. This is done for optimum performance on 64-bit architectures. The sin6_scope_id field is a 32-bit integer that identifies a set of interfaces as appropriate for the scope of the address carried in the sin6_addr field. For a link scope sin6_addr sin6_scope_id would be an interface index. For a site scope sin6_addr, sin6_scope_id would be a site identifier. The mapping of sin6_scope_id to an interface or set of interfaces is left to implementation and future specifications on the subject of site identifiers. Notice that the sockaddr_in6 structure will normally be larger than the generic sockaddr structure. On many existing implementations the sizeof(struct sockaddr_in) equals sizeof(struct sockaddr), with both being 16 bytes. Any existing code that makes this assumption needs to be examined carefully when converting to IPv6.3.4 Socket Address Structure for 4.4BSD-Based Systems The 4.4BSD release includes a small, but incompatible change to the socket interface. The "sa_family" field of the sockaddr data structure was changed from a 16-bit value to an 8-bit value, and the space saved used to hold a length field, named "sa_len". The sockaddr_in6 data structure given in the previous section cannot be correctly cast into the newer sockaddr data structure. For this reason, the following alternative IPv6 address data structure is provided to be used on systems based on 4.4BSD. It is defined as a result of including the <netinet/in.h> header.Gilligan, et. al. Informational [Page 8]RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999struct sockaddr_in6 { uint8_t sin6_len; /* length of this struct */ sa_family_t sin6_family; /* AF_INET6 */ in_port_t sin6_port; /* transport layer port # */ uint32_t sin6_flowinfo; /* IPv6 flow information */ struct in6_addr sin6_addr; /* IPv6 address */ uint32_t sin6_scope_id; /* set of interfaces for a scope */}; The only differences between this data structure and the 4.3BSD variant are the inclusion of the length field, and the change of the family field to a 8-bit data type. The definitions of all the other fields are identical to the structure defined in the previous section. Systems that provide this version of the sockaddr_in6 data structure must also declare SIN6_LEN as a result of including the <netinet/in.h> header. This macro allows applications to determine whether they are being built on a system that supports the 4.3BSD or 4.4BSD variants of the data structure.3.5 The Socket Functions Applications call the socket() function to create a socket descriptor that represents a communication endpoint. The arguments to the socket() function tell the system which protocol to use, and what format address structure will be used in subsequent functions. For example, to create an IPv4/TCP socket, applications make the call: s = socket(PF_INET, SOCK_STREAM, 0); To create an IPv4/UDP socket, applications make the call: s = socket(PF_INET, SOCK_DGRAM, 0); Applications may create IPv6/TCP and IPv6/UDP sockets by simply using the constant PF_INET6 instead of PF_INET in the first argument. For example, to create an IPv6/TCP socket, applications make the call: s = socket(PF_INET6, SOCK_STREAM, 0); To create an IPv6/UDP socket, applications make the call: s = socket(PF_INET6, SOCK_DGRAM, 0);Gilligan, et. al. Informational [Page 9]RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999 Once the application has created a PF_INET6 socket, it must use the sockaddr_in6 address structure when passing addresses in to the system. The functions that the application uses to pass addresses into the system are: bind() connect() sendmsg() sendto() The system will use the sockaddr_in6 address structure to return addresses to applications that are using PF_INET6 sockets. The functions that return an address from the system to an application are: accept() recvfrom() recvmsg() getpeername() getsockname() No changes to the syntax of the socket functions are needed to support IPv6, since all of the "address carrying" functions use an opaque address pointer, and carry an address length as a function argument.3.6 Compatibility with IPv4 Applications In order to support the large base of applications using the original API, system implementations must provide complete source and binary compatibility with the original API. This means that systems must continue to support PF_INET sockets and the sockaddr_in address structure. Applications must be able to create IPv4/TCP and IPv4/UDP sockets using the PF_INET constant in the socket() function, as described in the previous section. Applications should be able to hold a combination of IPv4/TCP, IPv4/UDP, IPv6/TCP and IPv6/UDP sockets simultaneously within the same process. Applications using the original API should continue to operate as they did on systems supporting only IPv4. That is, they should continue to interoperate with IPv4 nodes.3.7 Compatibility with IPv4 Nodes The API also provides a different type of compatibility: the ability for IPv6 applications to interoperate with IPv4 applications. This feature uses the IPv4-mapped IPv6 address format defined in the IPv6 addressing architecture specification [2]. This address formatGilligan, et. al. Informational [Page 10]RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999 allows the IPv4 address of an IPv4 node to be represented as an IPv6 address. The IPv4 address is encoded into the low-order 32 bits of the IPv6 address, and the high-order 96 bits hold the fixed prefix 0:0:0:0:0:FFFF. IPv4- mapped addresses are written as follows: ::FFFF:<IPv4-address> These addresses can be generated automatically by the getipnodebyname() function when the specified host has only IPv4 addresses (as described in Section 6.1). Applications may use PF_INET6 sockets to open TCP connections to IPv4 nodes, or send UDP packets to IPv4 nodes, by simply encoding the destination's IPv4 address as an IPv4-mapped IPv6 address, and passing that address, within a sockaddr_in6 structure, in the connect() or sendto() call. When applications use PF_INET6 sockets to accept TCP connections from IPv4 nodes, or receive UDP packets from IPv4 nodes, the system returns the peer's address to the application in the accept(), recvfrom(), or getpeername() call using a sockaddr_in6 structure encoded this way. Few applications will likely need to know which type of node they are interoperating with. However, for those applications that do need to know, the IN6_IS_ADDR_V4MAPPED() macro, defined in Section 6.7, is provided.3.8 IPv6 Wildcard Address While the bind() function allows applications to select the source IP address of UDP packets and TCP connections, applications often want the system to select the source address for them. With IPv4, one specifies the address as the symbolic constant INADDR_ANY (called the "wildcard" address) in the bind() call, or simply omits the bind() entirely. Since the IPv6 address type is a structure (struct in6_addr), a symbolic constant can be used to initialize an IPv6 address variable, but cannot be used in an assignment. Therefore systems provide the IPv6 wildcard address in two forms. The first version is a global variable named "in6addr_any" that is an in6_addr structure. The extern declaration for this variable is defined in <netinet/in.h>: extern const struct in6_addr in6addr_any;Gilligan, et. al. Informational [Page 11]RFC 2553 Basic Socket Interface Extensions for IPv6 March 1999 Applications use in6addr_any similarly to the way they use INADDR_ANY in IPv4. For example, to bind a socket to port number 23, but let the system select the source address, an application could use the following code: struct sockaddr_in6 sin6; . . . sin6.sin6_family = AF_INET6; sin6.sin6_flowinfo = 0; sin6.sin6_port = htons(23); sin6.sin6_addr = in6addr_any; /* structure assignment */ . . . if (bind(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1) . . . The other version is a symbolic constant named IN6ADDR_ANY_INIT and is defined in <netinet/in.h>. This constant can be used to initialize an in6_addr structure: struct in6_addr anyaddr = IN6ADDR_ANY_INIT; Note that this constant can be used ONLY at declaration time. It can not be used to assign a previously declared in6_addr structure. For example, the following code will not work: /* This is the WRONG way to assign an unspecified address */ struct sockaddr_in6 sin6; . . . sin6.sin6_addr = IN6ADDR_ANY_INIT; /* will NOT compile */ Be aware that the IPv4 INADDR_xxx constants are all defined in host byte order but the IPv6 IN6ADDR_xxx constants and the IPv6 in6addr_xxx externals are defined in network byte order.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -