⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 动态规划.txt

📁 动态规划介绍及其应用!
💻 TXT
📖 第 1 页 / 共 4 页
字号:
{// 合并段

if (n == 0) return;

Tr a c e b a c k ( k a y, n-kay[n]);

cout << "New segment begins at " << (n - kay[n] + 1) << endl;

}

2. 无重复计算的递归方法

通过避免重复计算si,可将函数S的复杂性减少到(n)。注意这里只有n个不同的si。

例3 - 11 再考察例1 5 - 1 0中五个段的例子。当计算s5 时,先通过递归调用来计算s4,.,s0。计算s4 时,通过递归调用计算s3,.,s0,因此s4 只计算了一次,而s3 计算了两次,每一次计算s3要计算一次s2,因此s2 共计算了四次,而s1 重复计算了1 6次!可利用一个数组s 来保存先前计算过的si 以避免重复计算。改进后的代码见程序1 5 - 4,其中s为初值为0的全局整型数组。

程序15-4 避免重复计算的递归算法

int S(int i)

{ / /计算S ( i )和k a y [ i ]

/ /避免重复计算

if (i == 0) return 0;

if (s[i] > 0) return s[i]; //已计算完

/ /计算s [ i ]

/ /首先根据公式(1 5 - 3)计算k = 1时最小值

int lsum = l[i], bmax = b[i];

s[i] =S(i-1) + lsum * bmax;

kay[i] = 1;

/ /对其余的k计算最小值并更新

for (int k = 2; k <= i && lsum+l[i-k+1] <= L; k++) {

lsum += l[i-k+1];

if (bmax < b[i-k+1]) bmax = b[i-k+1];

int t = S(i-k);

if (s[i] > t + lsum * bmax) {

s[i] = t + lsum * bmax;

kay[i] = k;}

}

s[i] += header;

return s[i];

}

为了确定程序1 5 - 4的时间复杂性,我们将使用分期计算模式( amortization scheme)。在该模式中,总时间被分解为若干个不同项,通过计算各项的时间然后求和来获得总时间。当计算si 时,若sj 还未算出,则把调用S(j) 的消耗计入sj ;若sj 已算出,则把S(j) 的消耗计入si (这里sj依次把计算新sq 的消耗转移至每个sq )。程序1 5 - 4的其他消耗也被计入si。因为L是2 5 6之内的常数且每个li 至少为1,所以程序1 5 - 4的其他消耗为( 1 ),即计入每个si 的量是一个常数,且si 数目为n,因而总工作量为(n)。

3. 迭代方法

倘若用式(1 5 - 3)依序计算s1 , ., sn,便可得到一个复杂性为(n)的迭代方法。在该方法中,在si 计算之前, sj 必须已计算好。该方法的代码见程序1 5 - 5,其中仍利用函数Tr a c e b a c k(见程序1 5 - 3)来获得最优合并。

程序15-5 迭代计算s和k a y

void Vbits (int l[], int b[], int n, int s[], int kay[])

{ / /计算s [ i ]和k a y [ i ]

int L = 256, header = 11 ;

s[0] = 0;

/ /根据式(1 5 - 3)计算s [ i ]

for (int i = 1; i <= n; i++) {

// k = 1时,计算最小值

int lsum = l{i},

bmax = b[i];

s[i] = s[i-1] + lsum * bmax;

kay[i] = 1;

/ /对其余的k计算最小值并更新

for (int k=2; k<= i && lsum+l[i-k+1]<= L; k++) {

lsum += l[i-k+1];

if (bmax < b[i-k+1]) bmax = b[i-k+1];

if (s[i] > s[i-k] + lsum * bmax){

s[i] = s[i-k] + lsum * bmax;

kay[i] = k; }

}

s[i] += header;

}

}

 

3.2.3 矩阵乘法链

m×n矩阵A与n×p矩阵B相乘需耗费(m n p)的时间(见第2章练习1 6)。我们把m n p作为两个矩阵相乘所需时间的测量值。现假定要计算三个矩阵A、B和C的乘积,有两种方式计算此乘积。在第一种方式中,先用A乘以B得到矩阵D,然后D乘以C得到最终结果,这种乘法的顺序可写为(A*B) *C。第二种方式写为A* (B*C) ,道理同上。尽管这两种不同的计算顺序所得的结果相同,但时间消耗会有很大的差距。

例3-12 假定A为1 0 0×1矩阵,B为1×1 0 0矩阵,C为1 0 0×1矩阵,则A*B的时间耗费为10 0 0 0,得到的结果D为1 0 0×1 0 0矩阵,再与C相乘所需的时间耗费为1 000 000,因此计算(A*B) *C的总时间为1 010 000。B*C的时间耗费为10 000,得到的中间矩阵为1×1矩阵,再与A相乘的时间消耗为1 0 0,因而计算A*(B*C)的时间耗费竟只有10 100!而且,计算( A*B)*C时,还需10 000个单元来存储A*B,而A*(B*C)计算过程中,只需用1个单元来存储B*C。

下面举一个得益于选择合适秩序计算A*B*C矩阵的实例:考虑两个3维图像的匹配。图像匹配问题的要求是,确定一个图像需旋转、平移和缩放多少次才能逼近另一个图像。实现匹配的方法之一便是执行约1 0 0次迭代计算,每次迭代需计算1 2×1个向量T:

T=?A(x, y, z) *B(x, y, z)*C(x, y, z )

其中A,B和C分别为1 2×3,3×3和3×1矩阵。(x , y, z) 为矩阵中向量的坐标。设t 表示计算A(x , y, z) *B(x , y, z) *C(x , y, z)的计算量。假定此图像含2 5 6×2 5 6×2 5 6个向量,在此条件中,这1 0 0个迭代所需的总计算量近似为1 0 0 * 2 5 63 * t≈1 . 7 * 1 09 t。若三个矩阵是按由左向右的顺序相乘的,则t = 1 2 * 3 * 3 + 1 2 * 3 *1= 1 4 4;但如果从右向左相乘, t = 3 * 3 * 1 + 1 2 * 3 * 1 = 4 5。由左至右计算约需2 . 4 * 1 011个操作,而由右至左计算大概只需7 . 5 * 1 01 0个操作。假如使用一个每秒可执行1亿次操作的计算机,由左至右需4 0分钟,而由右至左只需1 2 . 5分钟。

在计算矩阵运算A*B*C时,仅有两种乘法顺序(由左至右或由右至左),所以可以很容易算出每种顺序所需要的操作数,并选择操作数比较少的那种乘法顺序。但对于更多矩阵相乘来说,情况要复杂得多。如计算矩阵乘积M1×M2×.×Mq,其中Mi 是一个ri×ri + 1 矩阵( 1≤i≤q)。不妨考虑q=4 的情况,此时矩阵运算A*B*C*D可按以下方式(顺序)计算:

A* ( (B*C) *D) A* (B* (C*D)) (A*B) * (C*D) (A* (B*C) ) *D

不难看出计算的方法数会随q 以指数级增加。因此,对于很大的q 来说,考虑每一种计算顺序并选择最优者已是不切实际的。

现在要介绍一种采用动态规划方法获得矩阵乘法次序的最优策略。这种方法可将算法的时间消耗降为(q3 )。用Mi j 表示链Mi×.×Mj (i≤j)的乘积。设c(i,j) 为用最优法计算Mi j 的消耗,k a y(i, j) 为用最优法计算Mi j 的最后一步Mi k×Mk+1, j 的消耗。因此Mij 的最优算法包括如何用最优算法计算Mik 和Mkj 以及计算Mik×Mkj 。根据最优原理,可得到如下的动态规划递归式:k a y(i,i+s)= 获得上述最小值的k. 以上求c 的递归式可用递归或迭代的方法来求解。c( 1,q) 为用最优法计算矩阵链的消耗,k a y( 1 ,q) 为最后一步的消耗。其余的乘积可由k a y值来确定。

1. 递归方法

与求解0 / 1背包及图像压缩问题一样,本递归方法也须避免重复计算c (i, j) 和k a y(i, j),否则算法的复杂性将会非常高。

例3-13 设q= 5和r =(1 0 , 5 , 1 , 1 0 , 2 , 1 0),式中待求的c 中有四个c的s= 0或1,因此用动态规划方法可立即求得它们的值: c( 1 , 1 ) =c( 5 , 5 ) = 0 ;c(1,2)=50; c( 4 , 5 ) = 2 0 0。现计算C( 2,5 ):c( 2 , 5 ) = m i n {c( 2 , 2 ) +c(3,5)+50, c( 2 , 3 ) +c(4,5)+500, c( 2 , 4 ) +c( 5 , 5 ) + 1 0 0 } (1 5 - 5)其中c( 2 , 2 ) =c( 5 , 5 ) = 0;c( 2 , 3 ) = 5 0;c(4,5)=200 。再用递归式计算c( 3 , 5 )及c( 2 , 4 ) :c( 3 , 5 ) = m i n {c( 3 , 3 ) +c(4,5)+100, c( 3 , 4 ) +c( 5 , 5 ) + 2 0 } = m i n { 0 + 2 0 0 + 1 0 0 , 2 0 + 0 + 2 0 } = 4 0c( 2 , 4 ) = m i n {c( 2 , 2 ) +c( 3 , 4 ) + 1 0 ,c( 2 , 3 ) +c( 4 , 4 ) + 1 0 0 } = m i n { 0 + 2 0 + 1 0 , 5 0 + 1 0 + 2 0 } = 3 0由以上计算还可得k a y( 3 , 5 ) = 4,k ay( 2 , 4 ) = 2。现在,计算c(2,5) 所需的所有中间值都已求得,将它们代入式(1 5 - 5)得:

c(2,5)=min{0+40+50, 50+200+500, 30+0+100}=90且k a y( 2 , 5 ) = 2

再用式(1 5 - 4)计算c( 1 , 5 ),在此之前必须算出c( 3 , 5 )、c(1,3) 和c( 1 , 4 )。同上述过程,亦可计算出它们的值分别为4 0、1 5 0和9 0,相应的k a y 值分别为4、2和2。代入式(1 5 - 4)得:

c(1,5)=min{0+90+500, 50+40+100, 150+200+1000, 90+0+200}=190且k a y( 1 , 5 ) = 2

此最优乘法算法的消耗为1 9 0,由k a y(1,5) 值可推出该算法的最后一步, k a y(1,5) 等于2,因此最后一步为M1 2×M3 5,而M12 和M35 都是用最优法计算而来。由k a y( 1 , 2 ) = 1知M12 等于M11×M2 2,同理由k a y( 3 , 5) = 4得知M35 由M3 4×M55 算出。依此类推,M34 由M3 3×M44 得出。因而此最优乘法算法的步骤为:

M11×M2 2 = M1 2

M3 3×M4 4 = M3 4

M3 4×M5 5 = M3 5

M1 2×M3 5 = M1 5

计算c(i, j) 和k a y (i, j) 的递归代码见程序1 5 - 6。在函数C中,r 为全局一维数组变量, k a y是全局二维数组变量,函数C返回c(i j) 之值且置k a y [a] [b] =k ay (a , b) (对于任何a , b),其中c(a , b)在计算c(i,j) 时皆已算出。函数Traceback 利用函数C中已算出的k a y值来推导出最优乘法算法的步骤。

设t(q)为函数C的复杂性,其中q=j-i+ 1(即Mij 是q个矩阵运算的结果)。当q为1或2时,t(q) =d,其中d 为一常数;而q> 2时,t (q)=2q-1?k = 1t (k ) +e q,其中e 是一个常量。因此当q>2时,t(q)>2t (q- 1 ) +e,所以t (q)= W ( 2q)。函数Traceback 的复杂性为(q)。

程序15-6 递归计算c (i, j) 和kay (i, j)

int C(int i, int j)

{ / /返回c(i,j) 且计算k(i,j) = kay[i][j]

if (i==j) return 0; //一个矩阵的情形

if (i == j-1) { //两个矩阵的情形

kay[i][i+1] = i;

return r[i]*r[i+1]*r[r+2];}

/ /多于两个矩阵的情形

/ /设u为k = i 时的最小值

int u = C(i,i) + C(i+1,j) + r[i]*r[i+1]*r[j+1];

kay[i][j] = i;

/ /计算其余的最小值并更新u

for (int k = i+1; k < j; k++) {

int t = C(i,k) + C(k+1,j) + r[i]*r[k+1]*r[j+1];

if (r < u) {//小于最小值的情形

u = t;

kay[i][j] = k;

}

return u;

}

void Traceback (int i, int j ,int **kay)

{ / /输出计算Mi j 的最优方法

if ( i == j) return;

Traceback(i, kay[i][j], kay);

Traceback(kay[i][j]+1, j, kay);

cout << "Multiply M" << i << ", "<< kay[i][j];

cout << " and M " << (kay[i][j]+1) << ", " << j << end1;

}

2. 无重复计算的递归方法

若避免再次计算前面已经计算过的c(及相应的k a y),可将复杂性降低到(q3)。而为了避免重复计算,需用一个全局数组c[ ][ ]存储c(i, j) 值,该数组初始值为0。函数C的新代码见程序1 5 - 7:

程序15-7 无重复计算的c (i, j) 计算方法

int C(int i,int j)

{ / /返回c(i,j) 并计算k a y ( i , j ) = k a y [ I ] [ j ]

/ /避免重复计算

/ /检查是否已计算过

if (c[i][j] >) return c[i][j];

/ /若未计算,则进行计算

if(i==j) return 0; //一个矩阵的情形

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -