⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lpccp.c

📁 语音压缩编码中的g729p编码程序
💻 C
字号:
/*
   ITU-T G.729 Annex C+ - Reference C code for floating point
                         implementation of G.729 Annex C+
                         (integration of Annexes B, D and E)
                         Version 2.1 of October 1999
*/
/*
 File : LPCCP.C
*/


/*****************************************************************************/
/* lpc analysis routines                                                     */
/*****************************************************************************/
#include <math.h>
#include "typedef.h"
#include "ld8k.h"
#include "tab_ld8k.h"
#include "ld8cp.h"
#include "tabld8cp.h"
/*----------------------------------------------------------------------------
* autocorr - compute the auto-correlations of windowed speech signal
*----------------------------------------------------------------------------
*/
void autocorr(
    FLOAT *x,              /* input : input signal x[0:L_WINDOW] */
    int m,                 /* input : LPC order                  */
    FLOAT *r               /* output: auto-correlation vector r[0:M]*/
)
{
    FLOAT y[L_WINDOW];  
    FLOAT sum;
    int i, j;
    
    for (i = 0; i < L_WINDOW; i++)
        y[i] = x[i]*hamwindow[i];
    
    for (i = 0; i <= m; i++)
    {
        sum = (F)0.0;
        for (j = 0; j < L_WINDOW-i; j++)
            sum += y[j]*y[j+i];
        r[i] = sum;
    }
    if (r[0]<(F)1.0) r[0]=(F)1.0;
    
    return;
}

/*-------------------------------------------------------------*
* procedure lag_window:                                       *
*           ~~~~~~~~~                                         *
* lag windowing of the autocorrelations                       *
*-------------------------------------------------------------*/
void lag_window(
    int m,                 /* input : LPC order                  */
    FLOAT   r[]            /* in/out: correlation */
)
{
    int i;
    
    for (i=1; i<= m; i++)
        r[i] *= lwindow[i-1];

    return;
}


/*----------------------------------------------------------------------------
* levinson - levinson-durbin recursion to compute LPC parameters
*----------------------------------------------------------------------------
*/
FLOAT levinsone(        /* output: prediction error (energy) */
    int m,                 /* input : LPC order */
    FLOAT *r,              /* input : auto correlation coefficients r[0:M] */
    FLOAT *a,              /* output: lpc coefficients a[0] = 1            */
    FLOAT *rc,             /* output: reflection coefficients rc[0:M-1]    */
    FLOAT *old_A,          /* (i/o) : last stable filter LPC coefficients  */
    FLOAT *old_rc          /* (i/o) : last stable filter Reflection coefficients.*/
)
{
    FLOAT s, at, err;
    int i, j, l;
    
    if(r[1] > r[0]) r[1] = r[0];
    rc[0] = (-r[1])/r[0];
    a[0] = (F)1.0;
    a[1] = rc[0];
    err = r[0] + r[1]*rc[0];
    for (i = 2; i <= m; i++)
    {
        s = (F)0.0;
        for (j = 0; j < i; j++)
            s += r[i-j]*a[j];
        if(err != 0.) {
            rc[i-1]= (-s)/(err);
        }
        else rc[i-1] = (F)1.;
        
        /* Test for unstable filter. If unstable keep old A(z) */
        if(fabs(rc[i-1]) > (F)0.999451) {
            for(j=0; j<=m; j++) {
                a[j] = old_A[j];
            }
            rc[0] = old_rc[0];        /* only two rc coefficients are needed */
            rc[1] = old_rc[1];
            return (F)0.001;
        }
        
        /*------------------------------------------*
        *  Compute new LPC coeff.                  *
        *------------------------------------------*/
        
        for (j = 1; j <= (i/2); j++)
        {
            l = i-j;
            at = a[j] + rc[i-1]*a[l];
            a[l] += rc[i-1]*a[j];
            a[j] = at;
        }
        a[i] = rc[i-1];
        err += rc[i-1]*s;
        if (err <= (F)0.0)
            err = (F)0.001;
    }
    
    copy(a, old_A, (m+1));
    old_rc[0] = rc[0];
    old_rc[1] = rc[1];
    
    return err;
}

/*------------------------------------------------------------------*
*  procedure az_lsp:                                               *
*            ~~~~~~                                                *
*   Compute the LSPs from  the LP coefficients a[] using Chebyshev *
* polynomials. The found LSPs are in the cosine domain with values *
* in the range from 1 down to -1.                                  *
* The table grid[] contains the points (in the cosine domain) at   *
* which the polynomials are evaluated. The table corresponds to    *
* NO_POINTS frequencies uniformly spaced between 0 and pi.         *
*------------------------------------------------------------------*/
/* prototypes of local functions */

static FLOAT chebyshev(FLOAT x, FLOAT *f, int n);

void az_lsp(
    FLOAT *a,         /* input : LP filter coefficients                     */
    FLOAT *lsp,       /* output: Line spectral pairs (in the cosine domain) */
    FLOAT *old_lsp    /* input : LSP vector from past frame                 */
)
{
    int i, j, nf, ip;
    FLOAT xlow,ylow,xhigh,yhigh,xmid,ymid,xint;
    FLOAT *coef;
    
    FLOAT f1[NC+1], f2[NC+1];
    
    /*-------------------------------------------------------------*
    * find the sum and diff polynomials F1(z) and F2(z)           *
    *      F1(z) = [A(z) + z^11 A(z^-1)]/(1+z^-1)                 *
    *      F2(z) = [A(z) - z^11 A(z^-1)]/(1-z^-1)                 *
    *-------------------------------------------------------------*/
    f1[0] = (F)1.0;
    f2[0] = (F)1.0;
    for (i=1, j=M; i<=NC; i++, j--){
        f1[i] = a[i]+a[j]-f1[i-1];
        f2[i] = a[i]-a[j]+f2[i-1];
    }
    
    /*---------------------------------------------------------------------*
    * Find the LSPs (roots of F1(z) and F2(z) ) using the                 *
    * Chebyshev polynomial evaluation.                                    *
    * The roots of F1(z) and F2(z) are alternatively searched.            *
    * We start by finding the first root of F1(z) then we switch          *
    * to F2(z) then back to F1(z) and so on until all roots are found.    *
    *                                                                     *
    *  - Evaluate Chebyshev pol. at grid points and check for sign change.*
    *  - If sign change track the root by subdividing the interval        *
    *    NO_ITER times and ckecking sign change.                          *
    *---------------------------------------------------------------------*/
    nf=0;      /* number of found frequencies */
    ip=0;      /* flag to first polynomial   */
    
    coef = f1;  /* start with F1(z) */
    
    xlow=grid[0];
    ylow = chebyshev(xlow,coef,NC);
    
    j = 0;
    while ( (nf < M) && (j < GRID_POINTS) )
    {
        j++;
        xhigh = xlow;
        yhigh = ylow;
        xlow = grid[j];
        ylow = chebyshev(xlow,coef,NC);
        
        if (ylow*yhigh <= (F)0.0)  /* if sign change new root exists */
        {
            j--;
            
            /* divide the interval of sign change by 4 */
            
            for (i = 0; i < 4; i++)
            {
                xmid = (F)0.5*(xlow + xhigh);
                ymid = chebyshev(xmid,coef,NC);
                if (ylow*ymid <= (F)0.0)
                {
                    yhigh = ymid;
                    xhigh = xmid;
                }
                else
                {
                    ylow = ymid;
                    xlow = xmid;
                }
            }
            
            /* linear interpolation for evaluating the root */
            
            xint = xlow - ylow*(xhigh-xlow)/(yhigh-ylow);
            
            lsp[nf] = xint;    /* new root */
            nf++;
            
            ip = 1 - ip;         /* flag to other polynomial    */
            coef = ip ? f2 : f1;  /* pointer to other polynomial */
            
            xlow = xint;
            ylow = chebyshev(xlow,coef,NC);
        }
    }
    
    /* Check if M roots found */
    /* if not use the LSPs from previous frame */
    
    if ( nf < M) {
        for(i=0; i<M; i++)  lsp[i] = old_lsp[i];
    }       
    return;
}
/*------------------------------------------------------------------*
*            End procedure az_lsp()                                *
*------------------------------------------------------------------*/
            
/*--------------------------------------------------------------*
* function  chebyshev:                                         *
*           ~~~~~~~~~~                                         *
*    Evaluates the Chebyshev polynomial series                 *
*--------------------------------------------------------------*
*  The polynomial order is                                     *
*     n = m/2   (m is the prediction order)                    *
*  The polynomial is given by                                  *
*    C(x) = T_n(x) + f(1)T_n-1(x) + ... +f(n-1)T_1(x) + f(n)/2 *
*--------------------------------------------------------------*/
            
static FLOAT chebyshev(/* output: the value of the polynomial C(x)   */
                FLOAT x,         /* input : value of evaluation; x=cos(freq)       */
                FLOAT *f,        /* input : coefficients of sum or diff polynomial */
                int n            /* input : order of polynomial                    */
)
{
    FLOAT b1, b2, b0, x2;
    int i;                              /* for the special case of 10th order */
    /*       filter (n=5)                 */
    x2 = (F)2.0*x;                      /* x2 = 2.0*x;                        */
    b2 = (F)1.0;           /* f[0] */   /*                                    */
    b1 = x2 + f[1];                     /* b1 = x2 + f[1];                    */
    for (i=2; i<n; i++) {               /*                                    */
        b0 = x2*b1 - b2 + f[i];           /* b0 = x2 * b1 - 1. + f[2];          */
        b2 = b1;                          /* b2 = x2 * b0 - b1 + f[3];          */
        b1 = b0;                          /* b1 = x2 * b2 - b0 + f[4];          */
    }                                   /*                                    */
    return (x*b1 - b2 + (F)0.5*f[n]);   /* return (x*b1 - b2 + 0.5*f[5]);     */
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -