📄 kmeans.cpp
字号:
//#include "stdafx.h"
//#include "ImageObj.h"
#include "Clustering.h"
#include "math.h"
/******************************************************************************
/* Name: LBGCluster
/* Function: Clustering input vectors using LBG algorithm
/* Using Euclidean distance
/* Parameter: X -- Input vecters
/* N -- Number of input vectors
/* Y -- Clustering result
/* M -- Number of clustering center
/* Return: 0 -- Correct
/* 1 -- Error
/*
/******************************************************************************/
int LBGCluster(VQ_VECTOR *X, int N, VQ_CENTER *Y, int M)//x分配多大空间,为何不初始化指针?
{
if(N<M) return -1;
int L=1000, m=1, nCenter, i, j, k;
int nDimension = X[0].nDimension;//X[0].nDimension仍就不确定?
double D0, D;
struct VQ_CENTERINFO
{
double* Data;//聚类的形心
int nDimension;//矢量维数
double* SumData;//属于此类的矢量各维之和
int Num;//属于此类的矢量个数
};
VQ_CENTERINFO *Center = (VQ_CENTERINFO*)malloc(M*sizeof(VQ_CENTERINFO));
if(Center == NULL) return -1;
double *Distance = (double*)malloc(N*sizeof(double));
if(Distance == NULL) return -1;
for( i=0; i<M; i++)
{
Center[i].nDimension = nDimension;
Center[i].Data = (double*)malloc(sizeof(double)*nDimension);
Center[i].SumData = (double*)malloc(sizeof(double)*nDimension);
if( Center[i].Data == NULL || Center[i].SumData == NULL )
{
AfxMessageBox( "Memory used up!" );
return -1;
}
for( j=0; j<nDimension; j++ )
{
Center[i].Data[j] = X[i*N/M].Data[j];//形成初始码书
Center[i].SumData[j] = 0;//?
}
Center[i].Num = 0;//?
}
D0=1; D=1e+10;
while(m<L && fabs(D0-D)/D0>1e-5)//m=1 l=1000 平均失真?
{
for(i=0; i<M; i++)
{
for( j=0; j<nDimension; j++ )
Center[i].SumData[j] = 0;
Center[i].Num = 0;
}
D0 = D; D = 0; m++;//m控制迭代次数,不超过1000?
for(i=0; i<N; i++)
{
Distance[i] = 1e+10;
for(int j=0; j<M; j++)
{
double Dist = 0;
for( k=0; k<nDimension; k++ )
Dist += (X[i].Data[k]-Center[j].Data[k])*(X[i].Data[k]-Center[j].Data[k]);
if( Dist < Distance[i])
{
nCenter = j;//?
Distance[i] = Dist;
}
}
X[i].nCluster = nCenter;//以上为确定每一个矢量属于哪个胞腔。
for( k=0; k<nDimension; k++ )
Center[nCenter].SumData[k] += X[i].Data[k];
Center[nCenter].Num++;
D += Distance[i];//计算平均失真,为何不除以M
}
for(i=0; i<M; i++)
{
if(Center[i].Num != 0)//确定不是空胞腔
for( k=0; k<nDimension; k++ )
Center[i].Data[k] = Center[i].SumData[k]/Center[i].Num;//重新计算形心
else
{
int MaxNum=0;
for( k=1; k<M; k++)
MaxNum = Center[i].Num > Center[MaxNum].Num ? i: MaxNum;
int Num = Center[MaxNum].Num/2;
for( k=0; k<nDimension; k++ )
Center[MaxNum].SumData[k] = 0;
Center[MaxNum].Num = 0;
for(k=0; k<N; k++)
{
if(X[k].nCluster != MaxNum) continue;
if(Center[i].Num < Num)
{
X[k].nCluster = i;
for( m=0; m<nDimension; m++)
Center[i].SumData[m] += X[k].Data[m];
Center[i].Num++;
}
else
{
for( m=0; m<nDimension; m++ )
Center[MaxNum].SumData[m] += X[k].Data[m];
Center[MaxNum].Num++;
}
}
for( m=0; m<nDimension; m++ )
Center[i].Data[m] = Center[i].SumData[m] / Center[i].Num;
if(MaxNum < i)
for( m=0; m<nDimension; m++ )
Center[MaxNum].Data[m] = Center[MaxNum].SumData[m] / Center[MaxNum].Num;
}
}
}
for(i=0; i<M; i++)
{
for( m=0; m<nDimension; m++ )
Y[i].Data[m] = Center[i].Data[m];
Y[i].Num = Center[i].Num;
}
for( i=0; i<M; i++ )
{
free( Center[i].Data );
free( Center[i].SumData );
}
free(Center);
free(Distance);
return 0;
}
/******************************************************************************
/* Name: DumpClusterData
/* Function: Dump clustering result to a text file for debugging
/* Parameter: FileName -- Dump text file name
/* X -- Input vecters
/* N -- Number of input vectors
/* Y -- Clustering result
/* M -- Number of clustering center
/* Return: 0 -- Correct
/* 1 -- Error
/*
/******************************************************************************/
int DumpClusterData(CString FileName, VQ_VECTOR *X, int N, VQ_CENTER *Y, int M)
{
int i, j, k;
int nDimension = X[0].nDimension;
FILE *fp = fopen(FileName, "wt");
for( i=0; i<M; i++)
{
fprintf(fp, "Center%02d: ", i);
for( k=0; k<nDimension; k++ )
fprintf( fp, "%5.1f ", Y[i].Data[k] );
fprintf( fp, "Num=%03d\n", Y[i].Num);
for( j=0; j<N; j++)
{ if(X[j].nCluster != i) continue;
double Distance = 0;
for( k=0; k<nDimension; k++)
Distance += (X[j].Data[k]- Y[i].Data[k])*(X[j].Data[k]-Y[i].Data[k]);
Distance = sqrt( Distance );
for( k=0; k<nDimension; k++ )
fprintf(fp, " %03d ", (int)X[j].Data[k] );
fprintf( fp, " D=%5.1f\n", Distance);
}
}
fclose(fp);
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -