⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rijndael.cpp

📁 这个是基于混沌的AES加密算法
💻 CPP
📖 第 1 页 / 共 2 页
字号:

// This is an independent implementation of the encryption algorithm:   
//                                                                      
//         RIJNDAEL by Joan Daemen and Vincent Rijmen                   
//                                                                      
// which is a candidate algorithm in the Advanced Encryption Standard   
// programme of the US National Institute of Standards and Technology.  
//                                                                      
// Copyright in this implementation is held by Dr B R Gladman but I     
// hereby give permission for its free direct or derivative use subject 
// to acknowledgment of its origin and compliance with any conditions   
// that the originators of the algorithm place on its exploitation.     
//                                                                      
// Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999     

//  Algorithm rijndael (rijndael.cpp)
//  128 bit key:
//  Key Setup:    223/1416 cycles (encrypt/decrypt)
//  Encrypt:       362 cycles =    70.7 mbits/sec
//  Decrypt:       367 cycles =    69.8 mbits/sec
//  Mean:          365 cycles =    70.2 mbits/sec
//  192 bit key:
//  Key Setup:    214/1660 cycles (encrypt/decrypt)
//  Encrypt:       442 cycles =    57.9 mbits/sec
//  Decrypt:       432 cycles =    59.3 mbits/sec
//  Mean:          437 cycles =    58.6 mbits/sec
//  256 bit key:
//  Key Setup:    287/1994 cycles (encrypt/decrypt)
//  Encrypt:       502 cycles =    51.0 mbits/sec
//  Decrypt:       506 cycles =    50.6 mbits/sec
//  Mean:          504 cycles =    50.8 mbits/sec

#include "stdio.h"
#include <iostream.h>
#include <stdio.h>
#include <mbstring.h>

typedef unsigned char  u1byte;
typedef unsigned long  u4byte;

extern void chaos_key(u4byte *,double *);

#define LARGE_TABLES

u1byte  pow_tab[256];
u1byte  log_tab[256];
u1byte  sbx_tab[256];
u1byte  isb_tab[256];
u4byte  rco_tab[ 10];
u4byte  ft_tab[4][256];
u4byte  it_tab[4][256];
u4byte  data[1000];//存放u4byte型明文
u4byte  cipher[1000];//存放u4byte型密文



#ifdef  LARGE_TABLES
  u4byte  fl_tab[4][256];
  u4byte  il_tab[4][256];
#endif

u4byte  tab_gen = 0;

u4byte  k_len;
u4byte  e_key[60];
u4byte  d_key[60];

#define ff_mult(a,b)    (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
#define byte(x,n)       ((u1byte)((x)>>(8*n)))

#define f_rn(bo, bi, n, k)                          \
    bo[n] =  ft_tab[0][byte(bi[n],0)] ^             \
             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rn(bo, bi, n, k)                          \
    bo[n] =  it_tab[0][byte(bi[n],0)] ^             \
             it_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
             it_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

#define rotr(x,n)  (((x) >> ((int)(n))) | ((x) << (32 -(int)(n))))

#define rotl(x,n)  (((x) << ((int)(n))) | ((x) >> (32 -(int)(n))))


#ifdef LARGE_TABLES

#define ls_box(x)                \
    ( fl_tab[0][byte(x, 0)] ^    \
      fl_tab[1][byte(x, 1)] ^    \
      fl_tab[2][byte(x, 2)] ^    \
      fl_tab[3][byte(x, 3)] )

#define f_rl(bo, bi, n, k)                          \
    bo[n] =  fl_tab[0][byte(bi[n],0)] ^             \
             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)

#define i_rl(bo, bi, n, k)                          \
    bo[n] =  il_tab[0][byte(bi[n],0)] ^             \
             il_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
             il_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)

#else

#define ls_box(x)                            \
    ((u4byte)sbx_tab[byte(x, 0)] <<  0) ^    \
    ((u4byte)sbx_tab[byte(x, 1)] <<  8) ^    \
    ((u4byte)sbx_tab[byte(x, 2)] << 16) ^    \
    ((u4byte)sbx_tab[byte(x, 3)] << 24)

#define f_rl(bo, bi, n, k)                                      \
    bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^                    \
        rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]),  8) ^  \
        rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
        rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)

#define i_rl(bo, bi, n, k)                                      \
    bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^                    \
        rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]),  8) ^  \
        rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
        rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)

#endif

void gen_tabs(void)
{   u4byte  i, t;
    u1byte  p, q;

    // log and power tables for GF(2**8) finite field with  
    // 0x011b as modular polynomial - the simplest prmitive 
    // root is 0x03, used here to generate the tables       

    for(i = 0,p = 1; i < 256; ++i)
    {
        pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;

        p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
    }

    log_tab[1] = 0; p = 1;

    for(i = 0; i < 10; ++i)
    {
        rco_tab[i] = p; 

        p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
    }

    for(i = 0; i < 256; ++i)
    {   
        p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p; 
        q = (q >> 7) | (q << 1); p ^= q; 
        q = (q >> 7) | (q << 1); p ^= q; 
        q = (q >> 7) | (q << 1); p ^= q; 
        q = (q >> 7) | (q << 1); p ^= q ^ 0x63; 
        sbx_tab[i] = p; isb_tab[p] = (u1byte)i;
    }

    for(i = 0; i < 256; ++i)
    {
        p = sbx_tab[i]; 

#ifdef  LARGE_TABLES        
        
        t = p; fl_tab[0][i] = t;
        fl_tab[1][i] = rotl(t,  8);
        fl_tab[2][i] = rotl(t, 16);
        fl_tab[3][i] = rotl(t, 24);
#endif
        t = ((u4byte)ff_mult(2, p)) |
            ((u4byte)p <<  8) |
            ((u4byte)p << 16) |
            ((u4byte)ff_mult(3, p) << 24);
        
        ft_tab[0][i] = t;
        ft_tab[1][i] = rotl(t,  8);
        ft_tab[2][i] = rotl(t, 16);
        ft_tab[3][i] = rotl(t, 24);

        p = isb_tab[i]; 

#ifdef  LARGE_TABLES        
        
        t = p; il_tab[0][i] = t; 
        il_tab[1][i] = rotl(t,  8); 
        il_tab[2][i] = rotl(t, 16); 
        il_tab[3][i] = rotl(t, 24);
#endif 
        t = ((u4byte)ff_mult(14, p)) |
            ((u4byte)ff_mult( 9, p) <<  8) |
            ((u4byte)ff_mult(13, p) << 16) |
            ((u4byte)ff_mult(11, p) << 24);
        
        it_tab[0][i] = t; 
        it_tab[1][i] = rotl(t,  8); 
        it_tab[2][i] = rotl(t, 16); 
        it_tab[3][i] = rotl(t, 24); 
    }

    tab_gen = 1;
}

#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)

#define imix_col(y,x)       \
    u   = star_x(x);        \
    v   = star_x(u);        \
    w   = star_x(v);        \
    t   = w ^ (x);          \
   (y)  = u ^ v ^ w;        \
   (y) ^= rotr(u ^ t,  8) ^ \
          rotr(v ^ t, 16) ^ \
          rotr(t,24)

	
// initialise the key schedule from the user supplied key   

#define loop4(i)                                    \
{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
    t ^= e_key[4 * i];     e_key[4 * i + 4] = t;    \
    t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;    \
    t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;    \
    t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;    \
}

#define loop6(i)                                    \
{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
    t ^= e_key[6 * i];     e_key[6 * i + 6] = t;    \
    t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t;    \
    t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t;    \
    t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t;    \
    t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t;   \
    t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t;   \
}

#define loop8(i)                                    \
{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
    t ^= e_key[8 * i];     e_key[8 * i + 8] = t;    \
    t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t;    \
    t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t;   \
    t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t;   \
    t  = e_key[8 * i + 4] ^ ls_box(t);              \
    e_key[8 * i + 12] = t;                          \
    t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t;   \
    t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t;   \
    t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t;   \
}

void set_key(const u4byte in_key[], const u4byte key_len)
{   u4byte  i, t, u, v, w;

    if(!tab_gen)

        gen_tabs();

    k_len = (key_len + 31) / 32;

    e_key[0] = in_key[0]; 
	e_key[1] = in_key[1];
    e_key[2] = in_key[2]; 
	e_key[3] = in_key[3];

    switch(k_len)
    {
        case 4: t = e_key[3];
                for(i = 0; i < 10; ++i) 
                    loop4(i);
                break;

        case 6: e_key[4] = in_key[4]; t = e_key[5] = in_key[5];
                for(i = 0; i < 8; ++i) 
                    loop6(i);
                break;

        case 8: e_key[4] = in_key[4]; e_key[5] = in_key[5];
                e_key[6] = in_key[6]; t = e_key[7] = in_key[7];
                for(i = 0; i < 7; ++i) 
                    loop8(i);
                break;
    }

    d_key[0] = e_key[0]; d_key[1] = e_key[1];
    d_key[2] = e_key[2]; d_key[3] = e_key[3];

    for(i = 4; i < 4 * k_len + 24; ++i)
    {
        imix_col(d_key[i], e_key[i]);
    }

    
}

// encrypt a block of text  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -