📄 test_cfft_rad4_ns_nbrev.c
字号:
/*******************************************************************************
Copyright(c) 2000 - 2002 Analog Devices. All Rights Reserved.
Developed by Joint Development Software Application Team, IPDC, Bangalore, India
for Blackfin DSPs ( Micro Signal Architecture 1.0 specification).
By using this module you agree to the terms of the Analog Devices License
Agreement for DSP Software.
********************************************************************************
File Name : Test_CFFT_Rad4_NS_NBRev.c
Description : This function tests _CFFT_Rad4_NS_NBRev with 5 test cases
and finds cycle count for
FFT sizes of 16, 64, 256 and 1024.
1. Test1 - DC Test for 64 point FFT
2. Test2 - Impulse Test for 64 point FFT
3. Test3 - Multifrequency Test for 64 point FFT
4. Test4 - Multifrequency Test for 1024 point FFT
5. Test5 - Random Data Test for 16 point FFT
Note : This one supplies the inputs in normal order without
scaling, i.e., Non-Scaled Non-Bit-Reveresed(NS_NBRev)
*******************************************************************************/
#include "CFFT_Rad4_data.h"
#include "FFT_Rad4_Twiddle_Factors.h"
extern void _CFFT_Rad4_NS_NBRev(complex_fract16 in[], complex_fract16 out[],
int N, complex_fract16 w[]);
void (*f1)();
int error_flag = 0;
int cycle_count[10];
main(void)
{
int n, i;
int error1,error2;
f1 = (void(*)()) _CFFT_Rad4_NS_NBRev;// Function Pointer
// TEST 1:- DC Test for 64 points
// Finds radix4 DIT FFT for 64 points with DC input,i.e all the inputs are same.
// Only y(0) will be present.
n = 64;
for(i = 0; i < n; i++)
{
(in[i].re) = const_data1;
(in[i].im) = zero_in;
}
for(i = 0; i < 3*n/4-2; i++)
{
(w[i].re) = twid64[2*i];
(w[i].im) = twid64[2*i + 1];
}
cycle_count[0] = Compute_Cycle_Count(in, output, n, w);
//This function inturn calls CFFT_Rad4_NS_NBRev()
error1 = output[0].re - const_data1;
error2 = output[0].im;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR) || (error2 > MAX_PERMISSIBLE_ERROR))
error_flag = error_flag | 1;
for(i=1; i<n; i++)
{
error1 = output[i].re;
error2 = output[i].im;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR) || (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 1;
}
}
// TEST 2:- Impulse test for 64 points
// Finds radix4 DIT FFT for 64 points with input as impulse
// The output bins are verified for their constant value(flat spectrum)
n = 64;
in[0].re = const_data1;
in[0].im = zero_in;
for(i = 1; i<n; i++)
{
(in[i].re) = zero_in;
(in[i].im) = zero_in;
}
for(i = 0; i<3*n/4-2; i++)
{
(w[i].re) = twid64[2*i];
(w[i].im) = twid64[2*i+1];
}
cycle_count[1] = Compute_Cycle_Count(in, output, n, w);
//This function inturn calls CFFT_Rad4_NS_NBRev()
for(i=0; i<n; i++)
{
error1 = output[i].re - 0x200;
error2 = output[i].im - zero_in;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR) || (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 2;
}
}
// TEST 3:- Multifrequency test for 64 points
// Finds radix4 DIT FFT for 64 points with input as average of two sinewaves
// generated using MATLAB and then compares each FFT output with that generated
// using MATLAB
n = 64;
for(i = 0; i<n; i++)
{
(in[i].re) = in_64[i];
(in[i].im) = zero_in;
}
for(i = 0; i<3*n/4-2; i++)
{
(w[i].re) = twid64[2*i];
(w[i].im) = twid64[2*i+1];
}
cycle_count[2] = Compute_Cycle_Count(in, output, n, w);
//This function inturn calls CFFT_Rad4_NS_NBRev()
error1 = 0;
error2 = 0;
for(i=0; i<n; i++)
{
if ( (i == 12) || (i == 16) )
{
error1 = output[i].re - zero_in;
error2 = output[i].im + 0x2000;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR) || (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 4;
}
}
else if ( (i == 48) || (i == 52) )
{
error1 = output[i].re - 0;
error2 = output[i].im - 0x2000;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR)
|| (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 4;
}
}
else
{
error1 = output[i].re - 0;
error2 = output[i].im - 0;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR)
|| (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 4;
}
}
}
// TEST 4:- Multifrequency test for 1024 points
// Finds radix4 DIT FFT for 1024 points with input as average of two sine waves
// generated using MATLAB and then compares each FFT output with that generated
// using MATLAB
n = 1024;
for(i = 0; i < n; i++)
{
(in[i].re) = in_1024[i];
(in[i].im) = zero_in;
}
for(i = 0; i < 3 * n/4 - 2; i++)
{
(w[i].re) = twid1024[2*i];
(w[i].im) = twid1024[2*i + 1];
}
cycle_count[3] = Compute_Cycle_Count(in, output, n, w);
//This function inturn calls CFFT_Rad4_NS_NBRev()
error1 = 0;
error2 = 0;
for(i = 0; i < n; i++)
{
if ( (i == 64) || (i == 128) )
{
error1 = output[i].re - 0;
error2 = output[i].im + 0x2000;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR)
|| (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 8;
}
}
else if ( (i == 896) || (i == 960) )
{
error1 = output[i].re - 0;
error2 = output[i].im - 0x2000;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR)
|| (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 8;
}
}
else
{
error1 = output[i].re - 0;
error2 = output[i].im - 0;
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR)
|| (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 8;
}
}
}
// TEST 5:- Finds radix4 DIT FFT for 16 points with random input generated
// using MATLAB and then compares each FFT output with that generated using
// MATLAB
n = 16;
for(i = 0; i < n; i++)
{
(in[i].re) = in_16_real[i];
(in[i].im) = in_16_imag[i];
}
for(i = 0; i < 3*n/4 - 2; i++)
{
(w[i].re) = twid16[2*i];
(w[i].im) = twid16[2*i+1];
}
cycle_count[4] = Compute_Cycle_Count(in, output, n, w);
//This function inturn calls CFFT_Rad4_NS_NBRev()
for(i=0; i<n; i++)
{
error1 = output[i].re - out_16_real[i];
error2 = output[i].im - out_16_imag[i];
error1 = (error1<0) ? -error1 : error1;
error2 = (error2<0) ? -error2 : error2;
if((error1 > MAX_PERMISSIBLE_ERROR) || (error2 > MAX_PERMISSIBLE_ERROR))
{
error_flag = error_flag | 16;
}
}
#ifdef PRINTF_SUPPORT
if(error_flag & 1)
printf("Test Case 1 failed\n");
else
printf("Test Case 1 passed\n");
if(error_flag & 2)
printf("Test Case 2 failed\n");
else
printf("Test Case 2 passed\n");
if(error_flag & 4)
printf("Test Case 3 failed\n");
else
printf("Test Case 3 passed\n");
if(error_flag & 8)
printf("Test Case 4 failed\n");
else
printf("Test Case 4 passed\n");
if(error_flag & 16)
printf("Test Case 5 failed\n");
else
printf("Test Case 5 passed\n");
#endif
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -