⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hf2_16.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:57:30 EDT 2003 */#include "codelet-rdft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_hc2hc -compact -variables 4 -twiddle-log3 -n 16 -dit -name hf2_16 -include hf.h *//* * This function contains 196 FP additions, 108 FP multiplications, * (or, 156 additions, 68 multiplications, 40 fused multiply/add), * 104 stack variables, and 64 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_hc2hc.ml,v 1.9 2003/04/17 19:25:50 athena Exp $ */#include "hf.h"static const R *hf2_16(R *rio, R *iio, const R *W, stride ios, int m, int dist){     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     int i;     for (i = m - 2; i > 0; i = i - 2, rio = rio + dist, iio = iio - dist, W = W + 8) {	  E T1, T3d, T18, T26, T29, T2R, Tq, T1r, T1E, T2k, T2g, T1O, Te, T3c, Tz;	  E T1P, T1S, T1T, T1U, TG, TL, T1V, T1Y, T1Z, T20, TT, TY, T1X, T1A, T2l;	  E T1J, T2h, T1h, T2b, T1m, T2a;	  T1 = rio[0];	  T3d = iio[-WS(ios, 15)];	  {	       E T9, T1z, Td, T1v, T1I, Tl, Tp, T1G, Tu, T1D, TD, Ty, T1C, T1l, TX;	       E TK, T1g, TI, T1j, TF, T1c, TQ, TS, T1p, T1q, TV, T2, T5, Ti, Tg;	       E T4, Tw, Ts, Ta, Tv, T7, Tb, Tr, Tk, TW, TJ, TC, TU, To, TE;	       E TH, T14, T24, T17, T25, TN, TO, TP, TR;	       T9 = rio[WS(ios, 8)];	       T1z = iio[-WS(ios, 8)];	       Td = iio[-WS(ios, 7)];	       T1v = rio[WS(ios, 7)];	       T1I = iio[-WS(ios, 4)];	       Tl = rio[WS(ios, 4)];	       Tp = iio[-WS(ios, 11)];	       T1G = rio[WS(ios, 11)];	       Tu = rio[WS(ios, 12)];	       T1D = iio[-WS(ios, 12)];	       TD = rio[WS(ios, 2)];	       Ty = iio[-WS(ios, 3)];	       T1C = rio[WS(ios, 3)];	       T1l = iio[-WS(ios, 2)];	       TX = iio[-WS(ios, 9)];	       TK = iio[-WS(ios, 5)];	       T1g = iio[-WS(ios, 10)];	       TI = rio[WS(ios, 10)];	       T1j = rio[WS(ios, 13)];	       TF = iio[-WS(ios, 13)];	       T1c = rio[WS(ios, 5)];	       TQ = rio[WS(ios, 14)];	       TS = iio[-WS(ios, 1)];	       T1p = rio[WS(ios, 15)];	       T1q = iio[0];	       TV = rio[WS(ios, 6)];	       {		    E T12, T16, T13, T15, T3, T6, Tm, Tj, Tn, Th;		    T12 = rio[WS(ios, 1)];		    T16 = iio[-WS(ios, 6)];		    T13 = iio[-WS(ios, 14)];		    T15 = rio[WS(ios, 9)];		    T2 = W[4];		    T5 = W[5];		    T3 = W[0];		    T6 = W[1];		    Ti = W[3];		    Tg = W[2];		    T4 = T2 * T3;		    Tw = T5 * Tg;		    Ts = T5 * Ti;		    Ta = T2 * T6;		    Tv = T2 * Ti;		    T7 = T5 * T6;		    Tb = T5 * T3;		    Tr = T2 * Tg;		    Tm = Tg * T6;		    Tj = Ti * T6;		    Tn = Ti * T3;		    Th = Tg * T3;		    Tk = Th - Tj;		    TW = Tv - Tw;		    TJ = Ta + Tb;		    TC = Th + Tj;		    TU = Tr + Ts;		    To = Tm + Tn;		    TE = Tm - Tn;		    TH = T4 - T7;		    T14 = FMA(T3, T12, T6 * T13);		    T24 = FNMS(T6, T12, T3 * T13);		    T17 = FMA(T2, T15, T5 * T16);		    T25 = FNMS(T5, T15, T2 * T16);		    TN = W[6];		    TO = W[7];		    TP = FMA(TN, T3, TO * T6);		    TR = FNMS(TO, T3, TN * T6);	       }	       T18 = T14 + T17;	       T26 = T24 - T25;	       T29 = T14 - T17;	       T2R = T24 + T25;	       Tq = FMA(Tk, Tl, To * Tp);	       T1r = FMA(TN, T1p, TO * T1q);	       T1E = FMA(Tg, T1C, Ti * T1D);	       T2k = FNMS(TO, T1p, TN * T1q);	       T2g = FNMS(Ti, T1C, Tg * T1D);	       {		    E T8, Tc, Tt, Tx;		    T1O = FNMS(To, Tl, Tk * Tp);		    T8 = T4 + T7;		    Tc = Ta - Tb;		    Te = FNMS(Tc, Td, T8 * T9);		    T3c = FMA(Tc, T9, T8 * Td);		    Tt = Tr - Ts;		    Tx = Tv + Tw;		    Tz = FMA(Tt, Tu, Tx * Ty);		    T1P = FNMS(Tx, Tu, Tt * Ty);		    T1S = FMA(TE, TD, TC * TF);		    T1T = FNMS(TJ, TI, TH * TK);		    T1U = T1S - T1T;	       }	       TG = FNMS(TE, TF, TC * TD);	       TL = FMA(TH, TI, TJ * TK);	       T1V = TG - TL;	       T1Y = FMA(TR, TQ, TP * TS);	       T1Z = FMA(TW, TV, TU * TX);	       T20 = T1Y - T1Z;	       TT = FNMS(TR, TS, TP * TQ);	       TY = FNMS(TW, TX, TU * TV);	       T1X = TT - TY;	       {		    E T1u, T1F, T1y, T1H;		    {			 E T1s, T1t, T1w, T1x;			 T1s = T2 * TC;			 T1t = T5 * TE;			 T1u = T1s - T1t;			 T1F = T1s + T1t;			 T1w = T2 * TE;			 T1x = T5 * TC;			 T1y = T1w + T1x;			 T1H = T1w - T1x;		    }		    T1A = FMA(T1u, T1v, T1y * T1z);		    T2l = FNMS(T1y, T1v, T1u * T1z);		    T1J = FNMS(T1H, T1I, T1F * T1G);		    T2h = FMA(T1H, T1G, T1F * T1I);	       }	       {		    E T1b, T1i, T1f, T1k;		    {			 E T19, T1a, T1d, T1e;			 T19 = T2 * Tk;			 T1a = T5 * To;			 T1b = T19 + T1a;			 T1i = T19 - T1a;			 T1d = T2 * To;			 T1e = T5 * Tk;			 T1f = T1d - T1e;			 T1k = T1d + T1e;		    }		    T1h = FNMS(T1f, T1g, T1b * T1c);		    T2b = FNMS(T1k, T1j, T1i * T1l);		    T1m = FMA(T1i, T1j, T1k * T1l);		    T2a = FMA(T1f, T1c, T1b * T1g);	       }	  }	  {	       E TB, T2L, T10, T3k, T3f, T3l, T2O, T3a, T1o, T36, T2U, T32, T1L, T37, T2Z;	       E T33;	       {		    E Tf, TA, T2M, T2N;		    Tf = T1 + Te;		    TA = Tq + Tz;		    TB = Tf + TA;		    T2L = Tf - TA;		    {			 E TM, TZ, T3b, T3e;			 TM = TG + TL;			 TZ = TT + TY;			 T10 = TM + TZ;			 T3k = TZ - TM;			 T3b = T1O + T1P;			 T3e = T3c + T3d;			 T3f = T3b + T3e;			 T3l = T3e - T3b;		    }		    T2M = T1S + T1T;		    T2N = T1Y + T1Z;		    T2O = T2M - T2N;		    T3a = T2M + T2N;		    {			 E T1n, T2Q, T2S, T2T;			 T1n = T1h + T1m;			 T2Q = T18 - T1n;			 T2S = T2a + T2b;			 T2T = T2R - T2S;			 T1o = T18 + T1n;			 T36 = T2R + T2S;			 T2U = T2Q + T2T;			 T32 = T2T - T2Q;		    }		    {			 E T1B, T1K, T2V, T2W, T2X, T2Y;			 T1B = T1r + T1A;			 T1K = T1E + T1J;			 T2V = T1B - T1K;			 T2W = T2k + T2l;			 T2X = T2g + T2h;			 T2Y = T2W - T2X;			 T1L = T1B + T1K;			 T37 = T2W + T2X;			 T2Z = T2V - T2Y;			 T33 = T2V + T2Y;		    }	       }	       {		    E T11, T1M, T39, T3g;		    T11 = TB + T10;		    T1M = T1o + T1L;		    iio[-WS(ios, 8)] = T11 - T1M;		    rio[0] = T11 + T1M;		    T39 = T36 + T37;		    T3g = T3a + T3f;		    rio[WS(ios, 8)] = T39 - T3g;		    iio[0] = T39 + T3g;	       }	       {		    E T2P, T30, T3j, T3m;		    T2P = T2L + T2O;		    T30 = KP707106781 * (T2U + T2Z);		    iio[-WS(ios, 10)] = T2P - T30;		    rio[WS(ios, 2)] = T2P + T30;		    T3j = KP707106781 * (T32 + T33);		    T3m = T3k + T3l;		    rio[WS(ios, 10)] = T3j - T3m;		    iio[-WS(ios, 2)] = T3j + T3m;	       }	       {		    E T31, T34, T3n, T3o;		    T31 = T2L - T2O;		    T34 = KP707106781 * (T32 - T33);		    iio[-WS(ios, 14)] = T31 - T34;		    rio[WS(ios, 6)] = T31 + T34;		    T3n = KP707106781 * (T2Z - T2U);		    T3o = T3l - T3k;		    rio[WS(ios, 14)] = T3n - T3o;		    iio[-WS(ios, 6)] = T3n + T3o;	       }	       {		    E T35, T38, T3h, T3i;		    T35 = TB - T10;		    T38 = T36 - T37;		    iio[-WS(ios, 12)] = T35 - T38;		    rio[WS(ios, 4)] = T35 + T38;		    T3h = T1L - T1o;		    T3i = T3f - T3a;		    rio[WS(ios, 12)] = T3h - T3i;		    iio[-WS(ios, 4)] = T3h + T3i;	       }	  }	  {	       E T1R, T2v, T22, T3q, T3t, T3z, T2y, T3y, T2e, T2I, T2s, T2C, T2p, T2J, T2t;	       E T2F;	       {		    E T1N, T1Q, T2w, T2x;		    T1N = T1 - Te;		    T1Q = T1O - T1P;		    T1R = T1N - T1Q;		    T2v = T1N + T1Q;		    {			 E T1W, T21, T3r, T3s;			 T1W = T1U - T1V;			 T21 = T1X + T20;			 T22 = KP707106781 * (T1W - T21);			 T3q = KP707106781 * (T1W + T21);			 T3r = T3d - T3c;			 T3s = Tq - Tz;			 T3t = T3r - T3s;			 T3z = T3s + T3r;		    }		    T2w = T1V + T1U;		    T2x = T1X - T20;		    T2y = KP707106781 * (T2w + T2x);		    T3y = KP707106781 * (T2x - T2w);		    {			 E T28, T2A, T2d, T2B, T27, T2c;			 T27 = T1h - T1m;			 T28 = T26 + T27;			 T2A = T26 - T27;			 T2c = T2a - T2b;			 T2d = T29 - T2c;			 T2B = T29 + T2c;			 T2e = FMA(KP923879532, T28, KP382683432 * T2d);			 T2I = FNMS(KP382683432, T2B, KP923879532 * T2A);			 T2s = FNMS(KP923879532, T2d, KP382683432 * T28);			 T2C = FMA(KP382683432, T2A, KP923879532 * T2B);		    }		    {			 E T2j, T2D, T2o, T2E;			 {			      E T2f, T2i, T2m, T2n;			      T2f = T1r - T1A;			      T2i = T2g - T2h;			      T2j = T2f - T2i;			      T2D = T2f + T2i;			      T2m = T2k - T2l;			      T2n = T1E - T1J;			      T2o = T2m + T2n;			      T2E = T2m - T2n;			 }			 T2p = FNMS(KP923879532, T2o, KP382683432 * T2j);			 T2J = FMA(KP923879532, T2E, KP382683432 * T2D);			 T2t = FMA(KP382683432, T2o, KP923879532 * T2j);			 T2F = FNMS(KP382683432, T2E, KP923879532 * T2D);		    }	       }	       {		    E T23, T2q, T3x, T3A;		    T23 = T1R + T22;		    T2q = T2e + T2p;		    iio[-WS(ios, 11)] = T23 - T2q;		    rio[WS(ios, 3)] = T23 + T2q;		    T3x = T2s + T2t;		    T3A = T3y + T3z;		    rio[WS(ios, 11)] = T3x - T3A;		    iio[-WS(ios, 3)] = T3x + T3A;	       }	       {		    E T2r, T2u, T3B, T3C;		    T2r = T1R - T22;		    T2u = T2s - T2t;		    iio[-WS(ios, 15)] = T2r - T2u;		    rio[WS(ios, 7)] = T2r + T2u;		    T3B = T2p - T2e;		    T3C = T3z - T3y;		    rio[WS(ios, 15)] = T3B - T3C;		    iio[-WS(ios, 7)] = T3B + T3C;	       }	       {		    E T2z, T2G, T3p, T3u;		    T2z = T2v + T2y;		    T2G = T2C + T2F;		    iio[-WS(ios, 9)] = T2z - T2G;		    rio[WS(ios, 1)] = T2z + T2G;		    T3p = T2I + T2J;		    T3u = T3q + T3t;		    rio[WS(ios, 9)] = T3p - T3u;		    iio[-WS(ios, 1)] = T3p + T3u;	       }	       {		    E T2H, T2K, T3v, T3w;		    T2H = T2v - T2y;		    T2K = T2I - T2J;		    iio[-WS(ios, 13)] = T2H - T2K;		    rio[WS(ios, 5)] = T2H + T2K;		    T3v = T2F - T2C;		    T3w = T3t - T3q;		    rio[WS(ios, 13)] = T3v - T3w;		    iio[-WS(ios, 5)] = T3v + T3w;	       }	  }     }     return W;}static const tw_instr twinstr[] = {     {TW_COS, 0, 1},     {TW_SIN, 0, 1},     {TW_COS, 0, 3},     {TW_SIN, 0, 3},     {TW_COS, 0, 9},     {TW_SIN, 0, 9},     {TW_COS, 0, 15},     {TW_SIN, 0, 15},     {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 16, "hf2_16", twinstr, {156, 68, 40, 0}, &GENUS, 0, 0, 0 };void X(codelet_hf2_16) (planner *p) {     X(khc2hc_dit_register) (p, hf2_16, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -