📄 hf_64.c
字号:
} T2A = T2u + T2z; Tde = T7v + T7w; { E T2G, T7o, T2L, T7p; { E T2D, T2F, T2C, T2E; T2D = rio[WS(ios, 6)]; T2F = iio[-WS(ios, 57)]; T2C = W[10]; T2E = W[11]; T2G = FMA(T2C, T2D, T2E * T2F); T7o = FNMS(T2E, T2D, T2C * T2F); } { E T2I, T2K, T2H, T2J; T2I = rio[WS(ios, 38)]; T2K = iio[-WS(ios, 25)]; T2H = W[74]; T2J = W[75]; T2L = FMA(T2H, T2I, T2J * T2K); T7p = FNMS(T2J, T2I, T2H * T2K); } T2M = T2G + T2L; Tdj = T7o + T7p; T7n = T2G - T2L; T7q = T7o - T7p; } { E T2R, T7j, T2W, T7k; { E T2O, T2Q, T2N, T2P; T2O = rio[WS(ios, 54)]; T2Q = iio[-WS(ios, 9)]; T2N = W[106]; T2P = W[107]; T2R = FMA(T2N, T2O, T2P * T2Q); T7j = FNMS(T2P, T2O, T2N * T2Q); } { E T2T, T2V, T2S, T2U; T2T = rio[WS(ios, 22)]; T2V = iio[-WS(ios, 41)]; T2S = W[42]; T2U = W[43]; T2W = FMA(T2S, T2T, T2U * T2V); T7k = FNMS(T2U, T2T, T2S * T2V); } T2X = T2R + T2W; Tdk = T7j + T7k; T7i = T2R - T2W; T7l = T7j - T7k; } T2B = T2p + T2A; T2Y = T2M + T2X; Tfz = T2B - T2Y; TfA = Tdd + Tde; TfB = Tdj + Tdk; TfC = TfA - TfB; { E T7f, T7g, Tdi, Tdl; T7f = T7d - T7e; T7g = T2u - T2z; T7h = T7f + T7g; TaW = T7f - T7g; Tdi = T2p - T2A; Tdl = Tdj - Tdk; Tdm = Tdi - Tdl; TeM = Tdi + Tdl; } { E T7m, T7r, T7z, T7A; T7m = T7i - T7l; T7r = T7n + T7q; T7s = KP707106781 * (T7m - T7r); TaU = KP707106781 * (T7r + T7m); T7z = T7q - T7n; T7A = T7i + T7l; T7B = KP707106781 * (T7z - T7A); TaX = KP707106781 * (T7z + T7A); } { E Tdf, Tdg, T7u, T7x; Tdf = Tdd - Tde; Tdg = T2X - T2M; Tdh = Tdf - Tdg; TeL = Tdf + Tdg; T7u = T2j - T2o; T7x = T7v - T7w; T7y = T7u - T7x; TaT = T7u + T7x; } } { E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; E T7T, T3K, TdJ, T7L, T7O; { E T33, T35, T32, T34; T33 = rio[WS(ios, 1)]; T35 = iio[-WS(ios, 62)]; T32 = W[0]; T34 = W[1]; T36 = FMA(T32, T33, T34 * T35); T7G = FNMS(T34, T33, T32 * T35); } { E T38, T3a, T37, T39; T38 = rio[WS(ios, 33)]; T3a = iio[-WS(ios, 30)]; T37 = W[64]; T39 = W[65]; T3b = FMA(T37, T38, T39 * T3a); T7H = FNMS(T39, T38, T37 * T3a); } T3c = T36 + T3b; Tdq = T7G + T7H; { E T3e, T3g, T3d, T3f; T3e = rio[WS(ios, 17)]; T3g = iio[-WS(ios, 46)]; T3d = W[32]; T3f = W[33]; T3h = FMA(T3d, T3e, T3f * T3g); T8m = FNMS(T3f, T3e, T3d * T3g); } { E T3j, T3l, T3i, T3k; T3j = rio[WS(ios, 49)]; T3l = iio[-WS(ios, 14)]; T3i = W[96]; T3k = W[97]; T3m = FMA(T3i, T3j, T3k * T3l); T8n = FNMS(T3k, T3j, T3i * T3l); } T3n = T3h + T3m; Tdr = T8m + T8n; { E T3t, T7R, T3y, T7S; { E T3q, T3s, T3p, T3r; T3q = rio[WS(ios, 9)]; T3s = iio[-WS(ios, 54)]; T3p = W[16]; T3r = W[17]; T3t = FMA(T3p, T3q, T3r * T3s); T7R = FNMS(T3r, T3q, T3p * T3s); } { E T3v, T3x, T3u, T3w; T3v = rio[WS(ios, 41)]; T3x = iio[-WS(ios, 22)]; T3u = W[80]; T3w = W[81]; T3y = FMA(T3u, T3v, T3w * T3x); T7S = FNMS(T3w, T3v, T3u * T3x); } T3z = T3t + T3y; TdI = T7R + T7S; T7Q = T3t - T3y; T7T = T7R - T7S; } { E T3E, T7M, T3J, T7N; { E T3B, T3D, T3A, T3C; T3B = rio[WS(ios, 57)]; T3D = iio[-WS(ios, 6)]; T3A = W[112]; T3C = W[113]; T3E = FMA(T3A, T3B, T3C * T3D); T7M = FNMS(T3C, T3B, T3A * T3D); } { E T3G, T3I, T3F, T3H; T3G = rio[WS(ios, 25)]; T3I = iio[-WS(ios, 38)]; T3F = W[48]; T3H = W[49]; T3J = FMA(T3F, T3G, T3H * T3I); T7N = FNMS(T3H, T3G, T3F * T3I); } T3K = T3E + T3J; TdJ = T7M + T7N; T7L = T3E - T3J; T7O = T7M - T7N; } { E T3o, T3L, TdH, TdK; T3o = T3c + T3n; T3L = T3z + T3K; T3M = T3o + T3L; TfL = T3o - T3L; TdH = T3c - T3n; TdK = TdI - TdJ; TdL = TdH - TdK; TeQ = TdH + TdK; } { E TfG, TfH, T7I, T7J; TfG = Tdq + Tdr; TfH = TdI + TdJ; TfI = TfG - TfH; Tgt = TfG + TfH; T7I = T7G - T7H; T7J = T3h - T3m; T7K = T7I + T7J; Tb2 = T7I - T7J; } { E T7P, T7U, T8q, T8r; T7P = T7L - T7O; T7U = T7Q + T7T; T7V = KP707106781 * (T7P - T7U); Tbe = KP707106781 * (T7U + T7P); T8q = T7T - T7Q; T8r = T7L + T7O; T8s = KP707106781 * (T8q - T8r); Tb3 = KP707106781 * (T8q + T8r); } { E Tds, Tdt, T8l, T8o; Tds = Tdq - Tdr; Tdt = T3K - T3z; Tdu = Tds - Tdt; TeT = Tds + Tdt; T8l = T36 - T3b; T8o = T8m - T8n; T8p = T8l - T8o; Tbd = T8l + T8o; } } { E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; E T8H, T5h, TdT, T8J, T8M; { E T4A, T4C, T4z, T4B; T4A = rio[WS(ios, 63)]; T4C = iio[0]; T4z = W[124]; T4B = W[125]; T4D = FMA(T4z, T4A, T4B * T4C); T9e = FNMS(T4B, T4A, T4z * T4C); } { E T4F, T4H, T4E, T4G; T4F = rio[WS(ios, 31)]; T4H = iio[-WS(ios, 32)]; T4E = W[60]; T4G = W[61]; T4I = FMA(T4E, T4F, T4G * T4H); T9f = FNMS(T4G, T4F, T4E * T4H); } T4J = T4D + T4I; Te8 = T9e + T9f; { E T4L, T4N, T4K, T4M; T4L = rio[WS(ios, 15)]; T4N = iio[-WS(ios, 48)]; T4K = W[28]; T4M = W[29]; T4O = FMA(T4K, T4L, T4M * T4N); T8A = FNMS(T4M, T4L, T4K * T4N); } { E T4Q, T4S, T4P, T4R; T4Q = rio[WS(ios, 47)]; T4S = iio[-WS(ios, 16)]; T4P = W[92]; T4R = W[93]; T4T = FMA(T4P, T4Q, T4R * T4S); T8B = FNMS(T4R, T4Q, T4P * T4S); } T4U = T4O + T4T; Te9 = T8A + T8B; { E T50, T8E, T55, T8F; { E T4X, T4Z, T4W, T4Y; T4X = rio[WS(ios, 7)]; T4Z = iio[-WS(ios, 56)]; T4W = W[12]; T4Y = W[13]; T50 = FMA(T4W, T4X, T4Y * T4Z); T8E = FNMS(T4Y, T4X, T4W * T4Z); } { E T52, T54, T51, T53; T52 = rio[WS(ios, 39)]; T54 = iio[-WS(ios, 24)]; T51 = W[76]; T53 = W[77]; T55 = FMA(T51, T52, T53 * T54); T8F = FNMS(T53, T52, T51 * T54); } T56 = T50 + T55; TdS = T8E + T8F; T8G = T8E - T8F; T8H = T50 - T55; } { E T5b, T8K, T5g, T8L; { E T58, T5a, T57, T59; T58 = rio[WS(ios, 55)]; T5a = iio[-WS(ios, 8)]; T57 = W[108]; T59 = W[109]; T5b = FMA(T57, T58, T59 * T5a); T8K = FNMS(T59, T58, T57 * T5a); } { E T5d, T5f, T5c, T5e; T5d = rio[WS(ios, 23)]; T5f = iio[-WS(ios, 40)]; T5c = W[44]; T5e = W[45]; T5g = FMA(T5c, T5d, T5e * T5f); T8L = FNMS(T5e, T5d, T5c * T5f); } T5h = T5b + T5g; TdT = T8K + T8L; T8J = T5b - T5g; T8M = T8K - T8L; } { E T4V, T5i, Tea, Teb; T4V = T4J + T4U; T5i = T56 + T5h; T5j = T4V + T5i; TfR = T4V - T5i; Tea = Te8 - Te9; Teb = T5h - T56; Tec = Tea - Teb; Tf0 = Tea + Teb; } { E TfW, TfX, T8z, T8C; TfW = Te8 + Te9; TfX = TdS + TdT; TfY = TfW - TfX; Tgy = TfW + TfX; T8z = T4D - T4I; T8C = T8A - T8B; T8D = T8z - T8C; Tbl = T8z + T8C; } { E T8I, T8N, T9j, T9k; T8I = T8G - T8H; T8N = T8J + T8M; T8O = KP707106781 * (T8I - T8N); Tbx = KP707106781 * (T8I + T8N); T9j = T8J - T8M; T9k = T8H + T8G; T9l = KP707106781 * (T9j - T9k); Tbm = KP707106781 * (T9k + T9j); } { E TdR, TdU, T9g, T9h; TdR = T4J - T4U; TdU = TdS - TdT; TdV = TdR - TdU; TeX = TdR + TdU; T9g = T9e - T9f; T9h = T4O - T4T; T9i = T9g + T9h; Tbw = T9g - T9h; } } { E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; E T96; { E T5o, T8Q, T5t, T8R; { E T5l, T5n, T5k, T5m; T5l = rio[WS(ios, 3)]; T5n = iio[-WS(ios, 60)]; T5k = W[4]; T5m = W[5]; T5o = FMA(T5k, T5l, T5m * T5n); T8Q = FNMS(T5m, T5l, T5k * T5n); } { E T5q, T5s, T5p, T5r; T5q = rio[WS(ios, 35)]; T5s = iio[-WS(ios, 28)]; T5p = W[68]; T5r = W[69]; T5t = FMA(T5p, T5q, T5r * T5s); T8R = FNMS(T5r, T5q, T5p * T5s); } T5u = T5o + T5t; TdW = T8Q + T8R; T8S = T8Q - T8R; T8V = T5o - T5t; } { E T5W, T97, T61, T98; { E T5T, T5V, T5S, T5U; T5T = rio[WS(ios, 11)]; T5V = iio[-WS(ios, 52)]; T5S = W[20]; T5U = W[21]; T5W = FMA(T5S, T5T, T5U * T5V); T97 = FNMS(T5U, T5T, T5S * T5V); } { E T5Y, T60, T5X, T5Z; T5Y = rio[WS(ios, 43)]; T60 = iio[-WS(ios, 20)]; T5X = W[84]; T5Z = W[85]; T61 = FMA(T5X, T5Y, T5Z * T60); T98 = FNMS(T5Z, T5Y, T5X * T60); } T62 = T5W + T61; Te3 = T97 + T98; T94 = T5W - T61; T99 = T97 - T98; } { E T5z, T8W, T5E, T8X; { E T5w, T5y, T5v, T5x; T5w = rio[WS(ios, 19)]; T5y = iio[-WS(ios, 44)]; T5v = W[36]; T5x = W[37]; T5z = FMA(T5v, T5w, T5x * T5y); T8W = FNMS(T5x, T5w, T5v * T5y); } { E T5B, T5D, T5A, T5C; T5B = rio[WS(ios, 51)]; T5D = iio[-WS(ios, 12)]; T5A = W[100]; T5C = W[101]; T5E = FMA(T5A, T5B, T5C * T5D); T8X = FNMS(T5C, T5B, T5A * T5D); } T5F = T5z + T5E; TdX = T8W + T8X; T8T = T5z - T5E; T8Y = T8W - T8X; } { E T5L, T91, T5Q, T92; { E T5I, T5K, T5H, T5J; T5I = rio[WS(ios, 59)]; T5K = iio[-WS(ios, 4)]; T5H = W[116]; T5J = W[117]; T5L = FMA(T5H, T5I, T5J * T5K); T91 = FNMS(T5J, T5I, T5H * T5K); } { E T5N, T5P, T5M, T5O; T5N = rio[WS(ios, 27)]; T5P = iio[-WS(ios, 36)]; T5M = W[52]; T5O = W[53]; T5Q = FMA(T5M, T5N, T5O * T5P); T92 = FNMS(T5O, T5N, T5M * T5P); } T5R = T5L + T5Q; Te2 = T91 + T92; T93 = T91 - T92; T96 = T5L - T5Q; } { E T5G, T63, Te1, Te4; T5G = T5u + T5F; T63 = T5R + T62; T64 = T5G + T63; TfZ = T63 - T5G; Te1 = T5R - T62; Te4 = Te2 - Te3; Te5 = Te1 + Te4; Ted = Te1 - Te4; } { E TfS, TfT, T8U, T8Z; TfS = TdW + TdX; TfT = Te2 + Te3; TfU = TfS - TfT; Tgz = TfS + TfT; T8U = T8S + T8T; T8Z = T8V - T8Y; T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); } { E T95, T9a, Tbr, Tbs; T95 = T93 + T94; T9a = T96 - T99; T9b = FMA(KP382683432, T95, KP923879532 * T9a); T9n = FNMS(KP923879532, T95, KP382683432 * T9a); Tbr = T93 - T94;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -