📄 hf2_64.c
字号:
Ter = Tep - Teq; Tew = Tes - Tev; Tex = FMA(KP382683432, Ter, KP923879532 * Tew); Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); { E TfV, TfW, TgJ, TgM; TfV = Tep + Teq; TfW = Tes + Tev; TfX = FMA(KP923879532, TfV, KP382683432 * TfW); Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); TgJ = T45 - T4q; TgM = TgK - TgL; TgN = TgJ + TgM; Thj = TgJ - TgM; } } { E T80, TbW, T8k, TbX, T8b, Tc0, T8h, TbZ; { E T7Y, T7Z, T8i, T8j; T7Y = T7W - T7X; T7Z = T2Z - T34; T80 = T7Y + T7Z; TbW = T7Y - T7Z; T8i = T89 - T86; T8j = T81 + T84; T8k = KP707106781 * (T8i - T8j); TbX = KP707106781 * (T8i + T8j); } { E T85, T8a, T8d, T8g; T85 = T81 - T84; T8a = T86 + T89; T8b = KP707106781 * (T85 - T8a); Tc0 = KP707106781 * (T8a + T85); T8d = T2O - T2T; T8g = T8e - T8f; T8h = T8d - T8g; TbZ = T8d + T8g; } { E T8c, T8l, Tde, Tdf; T8c = T80 - T8b; T8l = T8h - T8k; T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); TaI = FMA(KP980785280, T8c, KP195090322 * T8l); Tde = TbW + TbX; Tdf = TbZ + Tc0; Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); } { E Tb2, Tb3, TbY, Tc1; Tb2 = T80 + T8b; Tb3 = T8h + T8k; Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); TbY = TbW - TbX; Tc1 = TbZ - Tc0; Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); } } { E T36, Teh, Tek, TgF, T3B, Tef, Tee, TgE, Teg, Tel; { E T2U, T35, Tei, Tej; T2U = T2O + T2T; T35 = T2Z + T34; T36 = T2U + T35; Teh = T2U - T35; Tei = T87 + T88; Tej = T82 + T83; Tek = Tei - Tej; TgF = Tei + Tej; } { E T3p, T3A, Tec, Ted; T3p = T3b + T3o; T3A = T3u + T3z; T3B = T3p + T3A; Tef = T3A - T3p; Tec = T7W + T7X; Ted = T8e + T8f; Tee = Tec - Ted; TgE = Tec + Ted; } T3C = T36 + T3B; Thy = TgE + TgF; Teg = Tee - Tef; Tel = Teh - Tek; Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); { E TfS, TfT, TgG, TgH; TfS = Tee + Tef; TfT = Teh + Tek; TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); TgG = TgE - TgF; TgH = T36 - T3B; TgI = TgG - TgH; Thi = TgH + TgG; } } { E T6A, Tfl, Th7, Tf4, T6e, Tar, T9Y, TcH, Tav, Tcw, T9M, Tfj; T6A = T6o + T6z; Tfl = T6z - T6o; Th7 = Tf2 + Tf3; Tf4 = Tf2 - Tf3; { E T6d, T9S, T9X, Tat, Tau, T9L; T6d = FNMS(T6b, T6c, T69 * T6a); T6e = T68 + T6d; Tar = T68 - T6d; T9S = T9Q - T9R; T9X = T9T + T9W; T9Y = KP707106781 * (T9S - T9X); TcH = KP707106781 * (T9S + T9X); Tat = T9T - T9W; Tau = T9R + T9Q; Tav = KP707106781 * (Tat - Tau); Tcw = KP707106781 * (Tau + Tat); T9L = FMA(T6b, T6a, T69 * T6c); T9M = T9K - T9L; Tfj = T9K + T9L; } { E T6f, Tfk, Th6, T9N; T6f = T65 + T6e; T6B = T6f + T6A; Th1 = T6f - T6A; Tfk = Tfi - Tfj; Tfm = Tfk - Tfl; Tga = Tfk + Tfl; Th6 = Tfi + Tfj; Th8 = Th6 - Th7; ThI = Th6 + Th7; T9N = T9J - T9M; T9Z = T9N - T9Y; Tbh = T9N + T9Y; } { E Tas, TcG, Tf1, Tcv; Tas = Taq + Tar; Taw = Tas - Tav; Tbk = Tas + Tav; TcG = Taq - Tar; TcI = TcG - TcH; Tdw = TcG + TcH; Tf1 = T65 - T6e; Tf5 = Tf1 - Tf4; Tg7 = Tf1 + Tf4; Tcv = T9J + T9M; Tcx = Tcv - Tcw; Tdt = Tcv + Tcw; } } { E T8Z, T9B, T5b, TeD, TeU, TgR, T94, T9A, T4L, T8T, T9y, TeB, T4V; T8Z = T8V - T8Y; T9B = T8V + T8Y; T4V = T4P + T4U; T5b = T4V + T5a; TeD = T5a - T4V; { E TeS, T90, T93, T4K, T9x; TeS = T91 + T92; TeU = TeS - TeT; TgR = TeS + TeT; T90 = T4P - T4U; T93 = T91 - T92; T94 = T90 + T93; T9A = T93 - T90; T4K = FMA(T4G, T4H, T4I * T4J); T4L = T4F + T4K; T8T = T4F - T4K; T9x = FNMS(T4I, T4H, T4G * T4J); T9y = T9w - T9x; TeB = T9w + T9x; } { E T4M, TeR, TgQ, TeC; T4M = T4C + T4L; T5c = T4M + T5b; TgV = T4M - T5b; TeR = T4C - T4L; TeV = TeR - TeU; Tg0 = TeR + TeU; TgQ = TeA + TeB; TgS = TgQ - TgR; ThD = TgQ + TgR; TeC = TeA - TeB; TeE = TeC - TeD; Tg3 = TeC + TeD; } { E T8U, T95, Tcc, Tcd; T8U = T8S + T8T; T95 = KP707106781 * (T8Z - T94); T96 = T8U - T95; Tbd = T8U + T95; Tcc = T8S - T8T; Tcd = KP707106781 * (T9A + T9B); Tce = Tcc - Tcd; Tdp = Tcc + Tcd; } { E Tcn, Tco, T9z, T9C; Tcn = T9v + T9y; Tco = KP707106781 * (T94 + T8Z); Tcp = Tcn - Tco; Tdm = Tcn + Tco; T9z = T9v - T9y; T9C = KP707106781 * (T9A - T9B); T9D = T9z - T9C; Tba = T9z + T9C; } } { E Tv, T7h, TdY, ThY, Ti2, Tj1, T16, Tj2, T1K, Tiw, T7q, TbK, T7v, TbL, T7k; E ThZ, T7r, T7u, T7i; { E Tu, TdW, TdX, Ti0, TM; Tu = FNMS(Ts, Tt, To * Tp); Tv = T1 + Tu; T7h = T1 - Tu; TdW = T7m + T7n; TdX = T7s + T7t; TdY = TdW - TdX; ThY = TdW + TdX; Ti0 = FMA(Ts, Tp, To * Tt); Ti2 = Ti0 + Ti1; Tj1 = Ti1 - Ti0; TM = FMA(TG, TH, TK * TL); T16 = TM + T15; Tj2 = TM - T15; } { E T1s, T1J, T7o, T7p; T1s = T1g + T1r; T1J = T1z + T1I; T1K = T1s + T1J; Tiw = T1J - T1s; T7o = T7m - T7n; T7p = T1g - T1r; T7q = T7o - T7p; TbK = T7p + T7o; } T7r = T1z - T1I; T7u = T7s - T7t; T7v = T7r + T7u; TbL = T7r - T7u; T7i = FNMS(TK, TH, TG * TL); T7k = T7i - T7j; ThZ = T7i + T7j; { E T17, Ti3, Tix, TdV; T17 = Tv + T16; T1L = T17 + T1K; Tgz = T17 - T1K; Ti3 = ThZ + Ti2; Ti4 = ThY + Ti3; Tii = Ti3 - ThY; Tix = Ti2 - ThZ; Tiy = Tiw + Tix; TiM = Tix - Tiw; TdV = Tv - T16; TdZ = TdV - TdY; TfN = TdV + TdY; } { E T7l, T7w, Tj0, Tj3; T7l = T7h - T7k; T7w = KP707106781 * (T7q - T7v); T7x = T7l - T7w; TaX = T7l + T7w; Tj0 = KP707106781 * (T7q + T7v); Tj3 = Tj1 - Tj2; Tj4 = Tj0 + Tj3; Tji = Tj3 - Tj0; } { E Tjw, Tjx, TbJ, TbM; Tjw = KP707106781 * (TbL - TbK); Tjx = Tj2 + Tj1; Tjy = Tjw + Tjx; TjM = Tjx - Tjw; TbJ = T7h + T7k; TbM = KP707106781 * (TbK + TbL); TbN = TbJ - TbM; Td9 = TbJ + TbM; } } { E T4t, ThR, Ti6, Ti8, T7g, Ti7, ThU, ThV; { E T2L, T4s, ThW, Ti5; T2L = T1L + T2K; T4s = T3C + T4r; T4t = T2L + T4s; ThR = T2L - T4s; ThW = Thy + Thz; Ti5 = ThX + Ti4; Ti6 = ThW + Ti5; Ti8 = Ti5 - ThW; } { E T5S, T7f, ThS, ThT; T5S = T5c + T5R; T7f = T6B + T7e; T7g = T5S + T7f; Ti7 = T7f - T5S; ThS = ThD + ThE; ThT = ThI + ThJ; ThU = ThS - ThT; ThV = ThS + ThT; } iio[-WS(ios, 32)] = T4t - T7g; rio[WS(ios, 32)] = ThV - Ti6; rio[0] = T4t + T7g; iio[0] = ThV + Ti6; iio[-WS(ios, 48)] = ThR - ThU; rio[WS(ios, 48)] = Ti7 - Ti8; rio[WS(ios, 16)] = ThR + ThU; iio[-WS(ios, 16)] = Ti7 + Ti8; } { E ThB, ThN, Tic, Tie, ThG, ThO, ThL, ThP; { E Thx, ThA, Tia, Tib; Thx = T1L - T2K; ThA = Thy - Thz; ThB = Thx + ThA; ThN = Thx - ThA; Tia = T4r - T3C; Tib = Ti4 - ThX; Tic = Tia + Tib; Tie = Tib - Tia; } { E ThC, ThF, ThH, ThK; ThC = T5c - T5R; ThF = ThD - ThE; ThG = ThC + ThF; ThO = ThF - ThC; ThH = T6B - T7e; ThK = ThI - ThJ; ThL = ThH - ThK; ThP = ThH + ThK; } { E ThM, Ti9, ThQ, Tid; ThM = KP707106781 * (ThG + ThL); iio[-WS(ios, 40)] = ThB - ThM; rio[WS(ios, 8)] = ThB + ThM; Ti9 = KP707106781 * (ThO + ThP); rio[WS(ios, 40)] = Ti9 - Tic; iio[-WS(ios, 8)] = Ti9 + Tic; ThQ = KP707106781 * (ThO - ThP); iio[-WS(ios, 56)] = ThN - ThQ; rio[WS(ios, 24)] = ThN + ThQ; Tid = KP707106781 * (ThL - ThG); rio[WS(ios, 56)] = Tid - Tie; iio[-WS(ios, 24)] = Tid + Tie; } } { E TgP, Thd, Tiq, Tis, Th0, The, Thb, Thf; { E TgD, TgO, Tio, Tip; TgD = Tgz - TgC; TgO = KP707106781 * (TgI - TgN); TgP = TgD + TgO; Thd = TgD - TgO; Tio = KP707106781 * (Thj - Thi); Tip = Tii - Tih; Tiq = Tio + Tip; Tis = Tip - Tio; } { E TgU, TgZ, Th5, Tha; TgU = TgS - TgT; TgZ = TgV - TgY; Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); The = FNMS(KP923879532, TgZ, KP382683432 * TgU); Th5 = Th1 - Th4; Tha = Th8 - Th9; Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); Thf = FMA(KP382683432, Tha, KP923879532 * Th5); } { E Thc, Tin, Thg, Tir; Thc = Th0 + Thb; iio[-WS(ios, 44)] = TgP - Thc; rio[WS(ios, 12)] = TgP + Thc; Tin = The + Thf; rio[WS(ios, 44)] = Tin - Tiq; iio[-WS(ios, 12)] = Tin + Tiq; Thg = The - Thf; iio[-WS(ios, 60)] = Thd - Thg; rio[WS(ios, 28)] = Thd + Thg; Tir = Thb - Th0; rio[WS(ios, 60)] = Tir - Tis; iio[-WS(ios, 28)] = Tir + Tis; } } { E TfB, TfJ, TiO, TiQ, TfE, TfK, TfH, TfL; { E Tfx, TfA, TiK, TiN; Tfx = TdZ + Tea; TfA = Tfy + Tfz; TfB = Tfx + TfA; TfJ = Tfx - TfA; TiK = Tem + Tex; TiN = TiL + TiM; TiO = TiK + TiN; TiQ = TiN - TiK; } { E TfC, TfD, TfF, TfG; TfC = TeE + TeP; TfD = TeV + TeY; TfE = FMA(KP555570233, TfC, KP831469612 * TfD); TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); TfF = Tf5 + Tfg; TfG = Tfm + Tfp; TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); TfL = FMA(KP831469612, TfG, KP555570233 * TfF); } { E TfI, TiJ, TfM, TiP; TfI = TfE + TfH; iio[-WS(ios, 38)] = TfB - TfI; rio[WS(ios, 6)] = TfB + TfI; TiJ = TfK + TfL; rio[WS(ios, 38)] = TiJ - TiO; iio[-WS(ios, 6)] = TiJ + TiO; TfM = TfK - TfL; iio[-WS(ios, 54)] = TfJ - TfM; rio[WS(ios, 22)] = TfJ + TfM; TiP = TfH - TfE; rio[WS(ios, 54)] = TiP - TiQ; iio[-WS(ios, 22)] = TiP + TiQ; } } { E Thl, Tht, Tik, Tim, Tho, Thu, Thr, Thv; { E Thh, Thk, Tig, Tij; Thh = Tgz + TgC; Thk = KP707106781 * (Thi + Thj); Thl = Thh + Thk; Tht = Thh - Thk; Tig = KP707106781 * (TgI + TgN); Tij = Tih + Tii; Tik = Tig + Tij; Tim = Tij - Tig; } { E Thm, Thn, Thp, Thq; Thm = TgS + TgT; Thn = TgV + TgY; Tho = FMA(KP382683432, Thm, KP923879532 * Thn); Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); Thp = Th1 + Th4; Thq = Th8 + Th9; Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); Thv = FMA(KP923879532, Thq, KP382683432 * Thp); } { E Ths, Tif, Thw, Til; Ths = Tho + Thr; iio[-WS(ios, 36)] = Thl - Ths; rio[WS(ios, 4)] = Thl + Ths;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -