⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mr2hcii_64.c

📁 fftw-3.0.1
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:59:51 EDT 2003 */#include "codelet-rdft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_r2hc_noinline -compact -variables 4 -n 64 -name mr2hcII_64 -dft-II -include r2hcII.h *//* * This function contains 434 FP additions, 206 FP multiplications, * (or, 342 additions, 114 multiplications, 92 fused multiply/add), * 117 stack variables, and 128 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_r2hc_noinline.ml,v 1.1 2003/04/17 19:25:50 athena Exp $ */#include "r2hcII.h"static void mr2hcII_64_0(const R *I, R *ro, R *io, stride is, stride ros, stride ios){     DK(KP242980179, +0.242980179903263889948274162077471118320990783);     DK(KP970031253, +0.970031253194543992603984207286100251456865962);     DK(KP857728610, +0.857728610000272069902269984284770137042490799);     DK(KP514102744, +0.514102744193221726593693838968815772608049120);     DK(KP471396736, +0.471396736825997648556387625905254377657460319);     DK(KP881921264, +0.881921264348355029712756863660388349508442621);     DK(KP427555093, +0.427555093430282094320966856888798534304578629);     DK(KP903989293, +0.903989293123443331586200297230537048710132025);     DK(KP336889853, +0.336889853392220050689253212619147570477766780);     DK(KP941544065, +0.941544065183020778412509402599502357185589796);     DK(KP773010453, +0.773010453362736960810906609758469800971041293);     DK(KP634393284, +0.634393284163645498215171613225493370675687095);     DK(KP595699304, +0.595699304492433343467036528829969889511926338);     DK(KP803207531, +0.803207531480644909806676512963141923879569427);     DK(KP146730474, +0.146730474455361751658850129646717819706215317);     DK(KP989176509, +0.989176509964780973451673738016243063983689533);     DK(KP956940335, +0.956940335732208864935797886980269969482849206);     DK(KP290284677, +0.290284677254462367636192375817395274691476278);     DK(KP049067674, +0.049067674327418014254954976942682658314745363);     DK(KP998795456, +0.998795456205172392714771604759100694443203615);     DK(KP671558954, +0.671558954847018400625376850427421803228750632);     DK(KP740951125, +0.740951125354959091175616897495162729728955309);     DK(KP098017140, +0.098017140329560601994195563888641845861136673);     DK(KP995184726, +0.995184726672196886244836953109479921575474869);     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP555570233, +0.555570233019602224742830813948532874374937191);     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP195090322, +0.195090322016128267848284868477022240927691618);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     {	  E Tm, T34, T3Z, T5g, Tv, T35, T3W, T5h, Td, T33, T6B, T6Q, T3T, T5f, T68;	  E T6m, T2b, T3n, T4O, T5D, T2F, T3r, T4K, T5z, TK, T3c, T47, T5n, TR, T3b;	  E T44, T5o, T15, T38, T4e, T5l, T1c, T39, T4b, T5k, T1s, T3g, T4v, T5w, T1W;	  E T3k, T4k, T5s, T2u, T3q, T4R, T5A, T2y, T3o, T4H, T5C, T1L, T3j, T4y, T5t;	  E T1P, T3h, T4r, T5v;	  {	       E Te, Tk, Th, Tj, Tf, Tg;	       Te = I[WS(is, 4)];	       Tk = I[WS(is, 36)];	       Tf = I[WS(is, 20)];	       Tg = I[WS(is, 52)];	       Th = KP707106781 * (Tf - Tg);	       Tj = KP707106781 * (Tf + Tg);	       {		    E Ti, Tl, T3X, T3Y;		    Ti = Te + Th;		    Tl = Tj + Tk;		    Tm = FNMS(KP195090322, Tl, KP980785280 * Ti);		    T34 = FMA(KP195090322, Ti, KP980785280 * Tl);		    T3X = Tk - Tj;		    T3Y = Te - Th;		    T3Z = FNMS(KP555570233, T3Y, KP831469612 * T3X);		    T5g = FMA(KP831469612, T3Y, KP555570233 * T3X);	       }	  }	  {	       E Tq, Tt, Tp, Ts, Tn, To;	       Tq = I[WS(is, 60)];	       Tt = I[WS(is, 28)];	       Tn = I[WS(is, 12)];	       To = I[WS(is, 44)];	       Tp = KP707106781 * (Tn - To);	       Ts = KP707106781 * (Tn + To);	       {		    E Tr, Tu, T3U, T3V;		    Tr = Tp - Tq;		    Tu = Ts + Tt;		    Tv = FMA(KP980785280, Tr, KP195090322 * Tu);		    T35 = FNMS(KP980785280, Tu, KP195090322 * Tr);		    T3U = Tt - Ts;		    T3V = Tp + Tq;		    T3W = FNMS(KP555570233, T3V, KP831469612 * T3U);		    T5h = FMA(KP831469612, T3V, KP555570233 * T3U);	       }	  }	  {	       E T1, T66, T4, T65, T8, T3Q, Tb, T3R, T2, T3;	       T1 = I[0];	       T66 = I[WS(is, 32)];	       T2 = I[WS(is, 16)];	       T3 = I[WS(is, 48)];	       T4 = KP707106781 * (T2 - T3);	       T65 = KP707106781 * (T2 + T3);	       {		    E T6, T7, T9, Ta;		    T6 = I[WS(is, 8)];		    T7 = I[WS(is, 40)];		    T8 = FNMS(KP382683432, T7, KP923879532 * T6);		    T3Q = FMA(KP382683432, T6, KP923879532 * T7);		    T9 = I[WS(is, 24)];		    Ta = I[WS(is, 56)];		    Tb = FNMS(KP923879532, Ta, KP382683432 * T9);		    T3R = FMA(KP923879532, T9, KP382683432 * Ta);	       }	       {		    E T5, Tc, T6z, T6A;		    T5 = T1 + T4;		    Tc = T8 + Tb;		    Td = T5 + Tc;		    T33 = T5 - Tc;		    T6z = Tb - T8;		    T6A = T66 - T65;		    T6B = T6z - T6A;		    T6Q = T6z + T6A;	       }	       {		    E T3P, T3S, T64, T67;		    T3P = T1 - T4;		    T3S = T3Q - T3R;		    T3T = T3P - T3S;		    T5f = T3P + T3S;		    T64 = T3Q + T3R;		    T67 = T65 + T66;		    T68 = T64 + T67;		    T6m = T67 - T64;	       }	  }	  {	       E T22, T2D, T21, T2C, T26, T2z, T29, T2A, T1Z, T20;	       T22 = I[WS(is, 63)];	       T2D = I[WS(is, 31)];	       T1Z = I[WS(is, 15)];	       T20 = I[WS(is, 47)];	       T21 = KP707106781 * (T1Z - T20);	       T2C = KP707106781 * (T1Z + T20);	       {		    E T24, T25, T27, T28;		    T24 = I[WS(is, 7)];		    T25 = I[WS(is, 39)];		    T26 = FNMS(KP382683432, T25, KP923879532 * T24);		    T2z = FMA(KP382683432, T24, KP923879532 * T25);		    T27 = I[WS(is, 23)];		    T28 = I[WS(is, 55)];		    T29 = FNMS(KP923879532, T28, KP382683432 * T27);		    T2A = FMA(KP923879532, T27, KP382683432 * T28);	       }	       {		    E T23, T2a, T4M, T4N;		    T23 = T21 - T22;		    T2a = T26 + T29;		    T2b = T23 + T2a;		    T3n = T23 - T2a;		    T4M = T29 - T26;		    T4N = T2D - T2C;		    T4O = T4M - T4N;		    T5D = T4M + T4N;	       }	       {		    E T2B, T2E, T4I, T4J;		    T2B = T2z + T2A;		    T2E = T2C + T2D;		    T2F = T2B + T2E;		    T3r = T2E - T2B;		    T4I = T21 + T22;		    T4J = T2z - T2A;		    T4K = T4I + T4J;		    T5z = T4J - T4I;	       }	  }	  {	       E Ty, TP, TB, TO, TF, TL, TI, TM, Tz, TA;	       Ty = I[WS(is, 2)];	       TP = I[WS(is, 34)];	       Tz = I[WS(is, 18)];	       TA = I[WS(is, 50)];	       TB = KP707106781 * (Tz - TA);	       TO = KP707106781 * (Tz + TA);	       {		    E TD, TE, TG, TH;		    TD = I[WS(is, 10)];		    TE = I[WS(is, 42)];		    TF = FNMS(KP382683432, TE, KP923879532 * TD);		    TL = FMA(KP382683432, TD, KP923879532 * TE);		    TG = I[WS(is, 26)];		    TH = I[WS(is, 58)];		    TI = FNMS(KP923879532, TH, KP382683432 * TG);		    TM = FMA(KP923879532, TG, KP382683432 * TH);	       }	       {		    E TC, TJ, T45, T46;		    TC = Ty + TB;		    TJ = TF + TI;		    TK = TC + TJ;		    T3c = TC - TJ;		    T45 = TI - TF;		    T46 = TP - TO;		    T47 = T45 - T46;		    T5n = T45 + T46;	       }	       {		    E TN, TQ, T42, T43;		    TN = TL + TM;		    TQ = TO + TP;		    TR = TN + TQ;		    T3b = TQ - TN;		    T42 = Ty - TB;		    T43 = TL - TM;		    T44 = T42 - T43;		    T5o = T42 + T43;	       }	  }	  {	       E TW, T1a, TV, T19, T10, T16, T13, T17, TT, TU;	       TW = I[WS(is, 62)];	       T1a = I[WS(is, 30)];	       TT = I[WS(is, 14)];	       TU = I[WS(is, 46)];	       TV = KP707106781 * (TT - TU);	       T19 = KP707106781 * (TT + TU);	       {		    E TY, TZ, T11, T12;		    TY = I[WS(is, 6)];		    TZ = I[WS(is, 38)];		    T10 = FNMS(KP382683432, TZ, KP923879532 * TY);		    T16 = FMA(KP382683432, TY, KP923879532 * TZ);		    T11 = I[WS(is, 22)];		    T12 = I[WS(is, 54)];		    T13 = FNMS(KP923879532, T12, KP382683432 * T11);		    T17 = FMA(KP923879532, T11, KP382683432 * T12);	       }	       {		    E TX, T14, T4c, T4d;		    TX = TV - TW;		    T14 = T10 + T13;		    T15 = TX + T14;		    T38 = TX - T14;		    T4c = T13 - T10;		    T4d = T1a - T19;		    T4e = T4c - T4d;		    T5l = T4c + T4d;	       }	       {		    E T18, T1b, T49, T4a;		    T18 = T16 + T17;		    T1b = T19 + T1a;		    T1c = T18 + T1b;		    T39 = T1b - T18;		    T49 = TV + TW;		    T4a = T16 - T17;		    T4b = T49 + T4a;		    T5k = T4a - T49;	       }	  }	  {	       E T1g, T1U, T1j, T1T, T1n, T1Q, T1q, T1R, T1h, T1i;	       T1g = I[WS(is, 1)];	       T1U = I[WS(is, 33)];	       T1h = I[WS(is, 17)];	       T1i = I[WS(is, 49)];	       T1j = KP707106781 * (T1h - T1i);	       T1T = KP707106781 * (T1h + T1i);	       {		    E T1l, T1m, T1o, T1p;		    T1l = I[WS(is, 9)];		    T1m = I[WS(is, 41)];		    T1n = FNMS(KP382683432, T1m, KP923879532 * T1l);		    T1Q = FMA(KP382683432, T1l, KP923879532 * T1m);		    T1o = I[WS(is, 25)];		    T1p = I[WS(is, 57)];		    T1q = FNMS(KP923879532, T1p, KP382683432 * T1o);		    T1R = FMA(KP923879532, T1o, KP382683432 * T1p);	       }	       {		    E T1k, T1r, T4t, T4u;		    T1k = T1g + T1j;		    T1r = T1n + T1q;		    T1s = T1k + T1r;		    T3g = T1k - T1r;		    T4t = T1q - T1n;		    T4u = T1U - T1T;		    T4v = T4t - T4u;		    T5w = T4t + T4u;	       }	       {		    E T1S, T1V, T4i, T4j;		    T1S = T1Q + T1R;		    T1V = T1T + T1U;		    T1W = T1S + T1V;		    T3k = T1V - T1S;		    T4i = T1g - T1j;		    T4j = T1Q - T1R;		    T4k = T4i - T4j;		    T5s = T4i + T4j;	       }	  }	  {	       E T2g, T4F, T2j, T4E, T2p, T4C, T2s, T4B;	       {		    E T2c, T2i, T2f, T2h, T2d, T2e;		    T2c = I[WS(is, 3)];		    T2i = I[WS(is, 35)];		    T2d = I[WS(is, 19)];		    T2e = I[WS(is, 51)];		    T2f = KP707106781 * (T2d - T2e);		    T2h = KP707106781 * (T2d + T2e);		    T2g = T2c + T2f;		    T4F = T2c - T2f;		    T2j = T2h + T2i;		    T4E = T2i - T2h;	       }	       {		    E T2o, T2r, T2n, T2q, T2l, T2m;		    T2o = I[WS(is, 59)];		    T2r = I[WS(is, 27)];		    T2l = I[WS(is, 11)];		    T2m = I[WS(is, 43)];		    T2n = KP707106781 * (T2l - T2m);		    T2q = KP707106781 * (T2l + T2m);		    T2p = T2n - T2o;		    T4C = T2n + T2o;		    T2s = T2q + T2r;		    T4B = T2r - T2q;	       }	       {		    E T2k, T2t, T4P, T4Q;		    T2k = FNMS(KP195090322, T2j, KP980785280 * T2g);		    T2t = FMA(KP980785280, T2p, KP195090322 * T2s);		    T2u = T2k + T2t;		    T3q = T2t - T2k;		    T4P = FMA(KP831469612, T4F, KP555570233 * T4E);		    T4Q = FMA(KP831469612, T4C, KP555570233 * T4B);		    T4R = T4P + T4Q;		    T5A = T4P - T4Q;	       }	       {		    E T2w, T2x, T4D, T4G;		    T2w = FNMS(KP980785280, T2s, KP195090322 * T2p);		    T2x = FMA(KP195090322, T2g, KP980785280 * T2j);		    T2y = T2w - T2x;		    T3o = T2x + T2w;		    T4D = FNMS(KP555570233, T4C, KP831469612 * T4B);		    T4G = FNMS(KP555570233, T4F, KP831469612 * T4E);		    T4H = T4D - T4G;		    T5C = T4G + T4D;	       }	  }	  {	       E T1x, T4p, T1A, T4o, T1G, T4m, T1J, T4l;	       {		    E T1t, T1z, T1w, T1y, T1u, T1v;		    T1t = I[WS(is, 5)];		    T1z = I[WS(is, 37)];		    T1u = I[WS(is, 21)];		    T1v = I[WS(is, 53)];		    T1w = KP707106781 * (T1u - T1v);		    T1y = KP707106781 * (T1u + T1v);		    T1x = T1t + T1w;		    T4p = T1t - T1w;		    T1A = T1y + T1z;		    T4o = T1z - T1y;	       }	       {		    E T1F, T1I, T1E, T1H, T1C, T1D;		    T1F = I[WS(is, 61)];		    T1I = I[WS(is, 29)];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -