📄 mr2hcii_64.c
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul 5 21:59:51 EDT 2003 */#include "codelet-rdft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_r2hc_noinline -compact -variables 4 -n 64 -name mr2hcII_64 -dft-II -include r2hcII.h *//* * This function contains 434 FP additions, 206 FP multiplications, * (or, 342 additions, 114 multiplications, 92 fused multiply/add), * 117 stack variables, and 128 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_r2hc_noinline.ml,v 1.1 2003/04/17 19:25:50 athena Exp $ */#include "r2hcII.h"static void mr2hcII_64_0(const R *I, R *ro, R *io, stride is, stride ros, stride ios){ DK(KP242980179, +0.242980179903263889948274162077471118320990783); DK(KP970031253, +0.970031253194543992603984207286100251456865962); DK(KP857728610, +0.857728610000272069902269984284770137042490799); DK(KP514102744, +0.514102744193221726593693838968815772608049120); DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP427555093, +0.427555093430282094320966856888798534304578629); DK(KP903989293, +0.903989293123443331586200297230537048710132025); DK(KP336889853, +0.336889853392220050689253212619147570477766780); DK(KP941544065, +0.941544065183020778412509402599502357185589796); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP595699304, +0.595699304492433343467036528829969889511926338); DK(KP803207531, +0.803207531480644909806676512963141923879569427); DK(KP146730474, +0.146730474455361751658850129646717819706215317); DK(KP989176509, +0.989176509964780973451673738016243063983689533); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP049067674, +0.049067674327418014254954976942682658314745363); DK(KP998795456, +0.998795456205172392714771604759100694443203615); DK(KP671558954, +0.671558954847018400625376850427421803228750632); DK(KP740951125, +0.740951125354959091175616897495162729728955309); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { E Tm, T34, T3Z, T5g, Tv, T35, T3W, T5h, Td, T33, T6B, T6Q, T3T, T5f, T68; E T6m, T2b, T3n, T4O, T5D, T2F, T3r, T4K, T5z, TK, T3c, T47, T5n, TR, T3b; E T44, T5o, T15, T38, T4e, T5l, T1c, T39, T4b, T5k, T1s, T3g, T4v, T5w, T1W; E T3k, T4k, T5s, T2u, T3q, T4R, T5A, T2y, T3o, T4H, T5C, T1L, T3j, T4y, T5t; E T1P, T3h, T4r, T5v; { E Te, Tk, Th, Tj, Tf, Tg; Te = I[WS(is, 4)]; Tk = I[WS(is, 36)]; Tf = I[WS(is, 20)]; Tg = I[WS(is, 52)]; Th = KP707106781 * (Tf - Tg); Tj = KP707106781 * (Tf + Tg); { E Ti, Tl, T3X, T3Y; Ti = Te + Th; Tl = Tj + Tk; Tm = FNMS(KP195090322, Tl, KP980785280 * Ti); T34 = FMA(KP195090322, Ti, KP980785280 * Tl); T3X = Tk - Tj; T3Y = Te - Th; T3Z = FNMS(KP555570233, T3Y, KP831469612 * T3X); T5g = FMA(KP831469612, T3Y, KP555570233 * T3X); } } { E Tq, Tt, Tp, Ts, Tn, To; Tq = I[WS(is, 60)]; Tt = I[WS(is, 28)]; Tn = I[WS(is, 12)]; To = I[WS(is, 44)]; Tp = KP707106781 * (Tn - To); Ts = KP707106781 * (Tn + To); { E Tr, Tu, T3U, T3V; Tr = Tp - Tq; Tu = Ts + Tt; Tv = FMA(KP980785280, Tr, KP195090322 * Tu); T35 = FNMS(KP980785280, Tu, KP195090322 * Tr); T3U = Tt - Ts; T3V = Tp + Tq; T3W = FNMS(KP555570233, T3V, KP831469612 * T3U); T5h = FMA(KP831469612, T3V, KP555570233 * T3U); } } { E T1, T66, T4, T65, T8, T3Q, Tb, T3R, T2, T3; T1 = I[0]; T66 = I[WS(is, 32)]; T2 = I[WS(is, 16)]; T3 = I[WS(is, 48)]; T4 = KP707106781 * (T2 - T3); T65 = KP707106781 * (T2 + T3); { E T6, T7, T9, Ta; T6 = I[WS(is, 8)]; T7 = I[WS(is, 40)]; T8 = FNMS(KP382683432, T7, KP923879532 * T6); T3Q = FMA(KP382683432, T6, KP923879532 * T7); T9 = I[WS(is, 24)]; Ta = I[WS(is, 56)]; Tb = FNMS(KP923879532, Ta, KP382683432 * T9); T3R = FMA(KP923879532, T9, KP382683432 * Ta); } { E T5, Tc, T6z, T6A; T5 = T1 + T4; Tc = T8 + Tb; Td = T5 + Tc; T33 = T5 - Tc; T6z = Tb - T8; T6A = T66 - T65; T6B = T6z - T6A; T6Q = T6z + T6A; } { E T3P, T3S, T64, T67; T3P = T1 - T4; T3S = T3Q - T3R; T3T = T3P - T3S; T5f = T3P + T3S; T64 = T3Q + T3R; T67 = T65 + T66; T68 = T64 + T67; T6m = T67 - T64; } } { E T22, T2D, T21, T2C, T26, T2z, T29, T2A, T1Z, T20; T22 = I[WS(is, 63)]; T2D = I[WS(is, 31)]; T1Z = I[WS(is, 15)]; T20 = I[WS(is, 47)]; T21 = KP707106781 * (T1Z - T20); T2C = KP707106781 * (T1Z + T20); { E T24, T25, T27, T28; T24 = I[WS(is, 7)]; T25 = I[WS(is, 39)]; T26 = FNMS(KP382683432, T25, KP923879532 * T24); T2z = FMA(KP382683432, T24, KP923879532 * T25); T27 = I[WS(is, 23)]; T28 = I[WS(is, 55)]; T29 = FNMS(KP923879532, T28, KP382683432 * T27); T2A = FMA(KP923879532, T27, KP382683432 * T28); } { E T23, T2a, T4M, T4N; T23 = T21 - T22; T2a = T26 + T29; T2b = T23 + T2a; T3n = T23 - T2a; T4M = T29 - T26; T4N = T2D - T2C; T4O = T4M - T4N; T5D = T4M + T4N; } { E T2B, T2E, T4I, T4J; T2B = T2z + T2A; T2E = T2C + T2D; T2F = T2B + T2E; T3r = T2E - T2B; T4I = T21 + T22; T4J = T2z - T2A; T4K = T4I + T4J; T5z = T4J - T4I; } } { E Ty, TP, TB, TO, TF, TL, TI, TM, Tz, TA; Ty = I[WS(is, 2)]; TP = I[WS(is, 34)]; Tz = I[WS(is, 18)]; TA = I[WS(is, 50)]; TB = KP707106781 * (Tz - TA); TO = KP707106781 * (Tz + TA); { E TD, TE, TG, TH; TD = I[WS(is, 10)]; TE = I[WS(is, 42)]; TF = FNMS(KP382683432, TE, KP923879532 * TD); TL = FMA(KP382683432, TD, KP923879532 * TE); TG = I[WS(is, 26)]; TH = I[WS(is, 58)]; TI = FNMS(KP923879532, TH, KP382683432 * TG); TM = FMA(KP923879532, TG, KP382683432 * TH); } { E TC, TJ, T45, T46; TC = Ty + TB; TJ = TF + TI; TK = TC + TJ; T3c = TC - TJ; T45 = TI - TF; T46 = TP - TO; T47 = T45 - T46; T5n = T45 + T46; } { E TN, TQ, T42, T43; TN = TL + TM; TQ = TO + TP; TR = TN + TQ; T3b = TQ - TN; T42 = Ty - TB; T43 = TL - TM; T44 = T42 - T43; T5o = T42 + T43; } } { E TW, T1a, TV, T19, T10, T16, T13, T17, TT, TU; TW = I[WS(is, 62)]; T1a = I[WS(is, 30)]; TT = I[WS(is, 14)]; TU = I[WS(is, 46)]; TV = KP707106781 * (TT - TU); T19 = KP707106781 * (TT + TU); { E TY, TZ, T11, T12; TY = I[WS(is, 6)]; TZ = I[WS(is, 38)]; T10 = FNMS(KP382683432, TZ, KP923879532 * TY); T16 = FMA(KP382683432, TY, KP923879532 * TZ); T11 = I[WS(is, 22)]; T12 = I[WS(is, 54)]; T13 = FNMS(KP923879532, T12, KP382683432 * T11); T17 = FMA(KP923879532, T11, KP382683432 * T12); } { E TX, T14, T4c, T4d; TX = TV - TW; T14 = T10 + T13; T15 = TX + T14; T38 = TX - T14; T4c = T13 - T10; T4d = T1a - T19; T4e = T4c - T4d; T5l = T4c + T4d; } { E T18, T1b, T49, T4a; T18 = T16 + T17; T1b = T19 + T1a; T1c = T18 + T1b; T39 = T1b - T18; T49 = TV + TW; T4a = T16 - T17; T4b = T49 + T4a; T5k = T4a - T49; } } { E T1g, T1U, T1j, T1T, T1n, T1Q, T1q, T1R, T1h, T1i; T1g = I[WS(is, 1)]; T1U = I[WS(is, 33)]; T1h = I[WS(is, 17)]; T1i = I[WS(is, 49)]; T1j = KP707106781 * (T1h - T1i); T1T = KP707106781 * (T1h + T1i); { E T1l, T1m, T1o, T1p; T1l = I[WS(is, 9)]; T1m = I[WS(is, 41)]; T1n = FNMS(KP382683432, T1m, KP923879532 * T1l); T1Q = FMA(KP382683432, T1l, KP923879532 * T1m); T1o = I[WS(is, 25)]; T1p = I[WS(is, 57)]; T1q = FNMS(KP923879532, T1p, KP382683432 * T1o); T1R = FMA(KP923879532, T1o, KP382683432 * T1p); } { E T1k, T1r, T4t, T4u; T1k = T1g + T1j; T1r = T1n + T1q; T1s = T1k + T1r; T3g = T1k - T1r; T4t = T1q - T1n; T4u = T1U - T1T; T4v = T4t - T4u; T5w = T4t + T4u; } { E T1S, T1V, T4i, T4j; T1S = T1Q + T1R; T1V = T1T + T1U; T1W = T1S + T1V; T3k = T1V - T1S; T4i = T1g - T1j; T4j = T1Q - T1R; T4k = T4i - T4j; T5s = T4i + T4j; } } { E T2g, T4F, T2j, T4E, T2p, T4C, T2s, T4B; { E T2c, T2i, T2f, T2h, T2d, T2e; T2c = I[WS(is, 3)]; T2i = I[WS(is, 35)]; T2d = I[WS(is, 19)]; T2e = I[WS(is, 51)]; T2f = KP707106781 * (T2d - T2e); T2h = KP707106781 * (T2d + T2e); T2g = T2c + T2f; T4F = T2c - T2f; T2j = T2h + T2i; T4E = T2i - T2h; } { E T2o, T2r, T2n, T2q, T2l, T2m; T2o = I[WS(is, 59)]; T2r = I[WS(is, 27)]; T2l = I[WS(is, 11)]; T2m = I[WS(is, 43)]; T2n = KP707106781 * (T2l - T2m); T2q = KP707106781 * (T2l + T2m); T2p = T2n - T2o; T4C = T2n + T2o; T2s = T2q + T2r; T4B = T2r - T2q; } { E T2k, T2t, T4P, T4Q; T2k = FNMS(KP195090322, T2j, KP980785280 * T2g); T2t = FMA(KP980785280, T2p, KP195090322 * T2s); T2u = T2k + T2t; T3q = T2t - T2k; T4P = FMA(KP831469612, T4F, KP555570233 * T4E); T4Q = FMA(KP831469612, T4C, KP555570233 * T4B); T4R = T4P + T4Q; T5A = T4P - T4Q; } { E T2w, T2x, T4D, T4G; T2w = FNMS(KP980785280, T2s, KP195090322 * T2p); T2x = FMA(KP195090322, T2g, KP980785280 * T2j); T2y = T2w - T2x; T3o = T2x + T2w; T4D = FNMS(KP555570233, T4C, KP831469612 * T4B); T4G = FNMS(KP555570233, T4F, KP831469612 * T4E); T4H = T4D - T4G; T5C = T4G + T4D; } } { E T1x, T4p, T1A, T4o, T1G, T4m, T1J, T4l; { E T1t, T1z, T1w, T1y, T1u, T1v; T1t = I[WS(is, 5)]; T1z = I[WS(is, 37)]; T1u = I[WS(is, 21)]; T1v = I[WS(is, 53)]; T1w = KP707106781 * (T1u - T1v); T1y = KP707106781 * (T1u + T1v); T1x = T1t + T1w; T4p = T1t - T1w; T1A = T1y + T1z; T4o = T1z - T1y; } { E T1F, T1I, T1E, T1H, T1C, T1D; T1F = I[WS(is, 61)]; T1I = I[WS(is, 29)];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -