⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t2_32.c

📁 fftw-3.0.1
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:30:26 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 32 -name t2_32 -include t.h *//* * This function contains 488 FP additions, 280 FP multiplications, * (or, 376 additions, 168 multiplications, 112 fused multiply/add), * 204 stack variables, and 128 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twiddle.ml,v 1.16 2003/04/16 19:51:27 athena Exp $ */#include "t.h"static const R *t2_32(R *ri, R *ii, const R *W, stride ios, int m, int dist){     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP555570233, +0.555570233019602224742830813948532874374937191);     DK(KP195090322, +0.195090322016128267848284868477022240927691618);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     int i;     for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 8) {	  E T1, T7G, Tn, Tp, T3t, T4S, TQ, T3G, T49, T20, T2n, T4y, T1J, T43, T2w;	  E T4z, T36, T4Z, TK, T8b, T40, T6l, T3U, T6k, T1h, T3L, T1D, T3V, T1s, T3X;	  E T3E, T7E, T3O, T6h, T2k, T6w, T4i, T4x, T3q, T6I, T4O, T4P, T3w, T4T, T4R;	  E T4U, Tm, To, TX, T4I, T3a, T3H, T31, T4Y, T3f, T4J, T2G, T4s, T4r, T2B;	  E T4q, T4t, T27, T4a, T2M, T4m, T4n, T2P, T4l, T4o, T1U, T44;	  T1 = ri[0];	  T7G = ii[0];	  Tn = ri[WS(ios, 16)];	  Tp = ii[WS(ios, 16)];	  {	       E Tv, Tz, TE, TI, TP, TN, TU, TW, T12, T16, T1k, T1b, T1f, T1l, T24;	       E T1z, T1w, T1u, T1q, T1o, T1B, T1X, T1Z, T1T, T1R, T1I, T1G, T26, T2O, T3e;	       E T3m, T3o, T3u, T3v, T3c, T30, T2W, T33, T35, T38, T39, T2N, T2r, T2v, T2m;	       E T2l, T2i, T2g, T2z, T2A, T2D, T2F, T2L, T2J, T2, Ti, T3, Tc, TF, TC;	       E TG, TB, Tu, T1a, T15, Ty, T1t, T1Y, T1W, T1v, TH, T1y, T11, TD, T1A;	       E T1e, T4g, T3k, T1n, T1p, T2e, T4M, TM, T1K, T1O, TO, T1L, T1N, Ta, Tb;	       E T2t, Tk, T2o, Tf, Tg, T2s, Tj, T2p;	       Tv = ri[WS(ios, 8)];	       Tz = ii[WS(ios, 8)];	       TE = ri[WS(ios, 24)];	       TI = ii[WS(ios, 24)];	       TP = ii[WS(ios, 4)];	       TN = ri[WS(ios, 4)];	       TU = ri[WS(ios, 20)];	       TW = ii[WS(ios, 20)];	       T12 = ri[WS(ios, 28)];	       T16 = ii[WS(ios, 28)];	       T1k = ri[WS(ios, 2)];	       T1b = ri[WS(ios, 12)];	       T1f = ii[WS(ios, 12)];	       T1l = ii[WS(ios, 2)];	       T24 = ri[WS(ios, 22)];	       T1z = ri[WS(ios, 26)];	       T1w = ii[WS(ios, 10)];	       T1u = ri[WS(ios, 10)];	       T1q = ii[WS(ios, 18)];	       T1o = ri[WS(ios, 18)];	       T1B = ii[WS(ios, 26)];	       T1X = ri[WS(ios, 6)];	       T1Z = ii[WS(ios, 6)];	       T1T = ii[WS(ios, 14)];	       T1R = ri[WS(ios, 14)];	       T1I = ii[WS(ios, 30)];	       T1G = ri[WS(ios, 30)];	       T26 = ii[WS(ios, 22)];	       T2O = ii[WS(ios, 13)];	       T3e = ii[WS(ios, 23)];	       T3m = ri[WS(ios, 19)];	       T3o = ii[WS(ios, 19)];	       T3u = ri[WS(ios, 11)];	       T3v = ii[WS(ios, 11)];	       T3c = ri[WS(ios, 23)];	       T30 = ii[WS(ios, 31)];	       T2W = ri[WS(ios, 31)];	       T33 = ri[WS(ios, 15)];	       T35 = ii[WS(ios, 15)];	       T38 = ri[WS(ios, 7)];	       T39 = ii[WS(ios, 7)];	       T2N = ri[WS(ios, 13)];	       T2r = ri[WS(ios, 25)];	       T2v = ii[WS(ios, 25)];	       T2m = ii[WS(ios, 9)];	       T2l = ri[WS(ios, 9)];	       T2i = ii[WS(ios, 17)];	       T2g = ri[WS(ios, 17)];	       T2z = ri[WS(ios, 5)];	       T2A = ii[WS(ios, 5)];	       T2D = ri[WS(ios, 21)];	       T2F = ii[WS(ios, 21)];	       T2L = ii[WS(ios, 29)];	       T2J = ri[WS(ios, 29)];	       {		    E T2c, T2d, T3i, T3j, T3s, T3r, T4, T7, T5, T8, T6, T9, T14, T1d, Ts;		    E T18, T19, T1c, Te, Td, Tt, Tw, T13, TZ, T10, Tx;		    T2c = ri[WS(ios, 1)];		    T2d = ii[WS(ios, 1)];		    T3i = ri[WS(ios, 3)];		    T3j = ii[WS(ios, 3)];		    T3s = ii[WS(ios, 27)];		    T3r = ri[WS(ios, 27)];		    T2 = W[6];		    Ti = W[7];		    T3 = W[4];		    Tc = W[5];		    T4 = W[2];		    T7 = W[3];		    T5 = W[0];		    T8 = W[1];		    T6 = T4 * T5;		    T9 = T7 * T8;		    T14 = Ti * T5;		    T1d = Tc * T4;		    Ts = T3 * T5;		    T18 = T3 * T4;		    T19 = Tc * T7;		    T1c = T3 * T7;		    Te = T7 * T5;		    Td = T4 * T8;		    Tt = Tc * T8;		    Tw = T3 * T8;		    TF = T2 * T7;		    T13 = T2 * T8;		    TC = Ti * T7;		    TG = Ti * T4;		    TZ = T2 * T5;		    T10 = Ti * T8;		    TB = T2 * T4;		    Tx = Tc * T5;		    Tu = Ts + Tt;		    T1a = T18 - T19;		    T15 = T13 + T14;		    Ty = Tw - Tx;		    T1t = Ts - Tt;		    T1Y = T1c - T1d;		    T1W = T18 + T19;		    T1v = Tw + Tx;		    TH = TF - TG;		    T1y = TZ + T10;		    T11 = TZ - T10;		    TD = TB + TC;		    T1A = T13 - T14;		    T1e = T1c + T1d;		    T3t = FMA(T2, T3r, Ti * T3s);		    T4g = FNMS(T8, T2c, T5 * T2d);		    T4S = FNMS(Ti, T3r, T2 * T3s);		    T3k = FMA(T4, T3i, T7 * T3j);		    T1n = FMA(T2, T3, Ti * Tc);		    T1p = FNMS(Ti, T3, T2 * Tc);		    T2e = FMA(T5, T2c, T8 * T2d);		    T4M = FNMS(T7, T3i, T4 * T3j);		    TM = T6 - T9;		    T1K = T3 * TM;		    T1O = Tc * TM;		    TO = Td + Te;		    T1L = Tc * TO;		    T1N = T3 * TO;		    Ta = T6 + T9;		    Tb = T3 * Ta;		    T2t = Ti * Ta;		    Tk = Tc * Ta;		    T2o = T2 * Ta;		    Tf = Td - Te;		    Tg = Tc * Tf;		    T2s = T2 * Tf;		    Tj = T3 * Tf;		    T2p = Ti * Tf;	       }	       TQ = FMA(TM, TN, TO * TP);	       T3G = FNMS(TO, TN, TM * TP);	       T49 = FMA(T1Y, T1X, T1W * T1Z);	       T20 = FNMS(T1Y, T1Z, T1W * T1X);	       T2n = FMA(T3, T2l, Tc * T2m);	       T4y = FNMS(Tc, T2l, T3 * T2m);	       {		    E T1F, T1H, TA, TJ;		    T1F = TB - TC;		    T1H = TF + TG;		    T1J = FMA(T1F, T1G, T1H * T1I);		    T43 = FNMS(T1H, T1G, T1F * T1I);		    {			 E T2q, T2u, T32, T34;			 T2q = T2o - T2p;			 T2u = T2s + T2t;			 T2w = FMA(T2q, T2r, T2u * T2v);			 T4z = FNMS(T2u, T2r, T2q * T2v);			 T32 = FMA(T2, T1a, Ti * T1e);			 T34 = FNMS(Ti, T1a, T2 * T1e);			 T36 = FNMS(T34, T35, T32 * T33);			 T4Z = FMA(T34, T33, T32 * T35);		    }		    TA = FNMS(Ty, Tz, Tu * Tv);		    TJ = FNMS(TH, TI, TD * TE);		    TK = TA + TJ;		    T8b = TA - TJ;		    {			 E T3Y, T3Z, T3S, T3T;			 T3Y = FNMS(T1v, T1u, T1t * T1w);			 T3Z = FMA(T1A, T1z, T1y * T1B);			 T40 = T3Y - T3Z;			 T6l = T3Y + T3Z;			 T3S = FMA(Tf, T1k, Ta * T1l);			 T3T = FMA(T1p, T1o, T1n * T1q);			 T3U = T3S - T3T;			 T6k = T3S + T3T;		    }	       }	       {		    E T17, T1g, Th, Tl;		    T17 = FMA(T11, T12, T15 * T16);		    T1g = FMA(T1a, T1b, T1e * T1f);		    T1h = T17 + T1g;		    T3L = T17 - T1g;		    {			 E T1x, T1C, T1m, T1r;			 T1x = FMA(T1t, T1u, T1v * T1w);			 T1C = FNMS(T1A, T1B, T1y * T1z);			 T1D = T1x + T1C;			 T3V = T1x - T1C;			 T1m = FNMS(Tf, T1l, Ta * T1k);			 T1r = FNMS(T1p, T1q, T1n * T1o);			 T1s = T1m + T1r;			 T3X = T1m - T1r;		    }		    {			 E T3C, T3D, T3M, T3N;			 T3C = FMA(Ty, Tv, Tu * Tz);			 T3D = FMA(TH, TE, TD * TI);			 T3E = T3C - T3D;			 T7E = T3C + T3D;			 T3M = FNMS(T15, T12, T11 * T16);			 T3N = FNMS(T1e, T1b, T1a * T1f);			 T3O = T3M - T3N;			 T6h = T3M + T3N;			 {			      E T2j, T4h, T2f, T2h;			      T2f = FMA(T2, T1t, Ti * T1v);			      T2h = FNMS(Ti, T1t, T2 * T1v);			      T2j = FNMS(T2h, T2i, T2f * T2g);			      T4h = FMA(T2h, T2g, T2f * T2i);			      T2k = T2e + T2j;			      T6w = T4g + T4h;			      T4i = T4g - T4h;			      T4x = T2e - T2j;			 }		    }		    {			 E T3p, T4N, T3l, T3n;			 T3l = FNMS(Ti, Ty, T2 * Tu);			 T3n = FMA(T2, Ty, Ti * Tu);			 T3p = FMA(T3l, T3m, T3n * T3o);			 T4N = FNMS(T3n, T3m, T3l * T3o);			 T3q = T3k + T3p;			 T6I = T4M + T4N;			 T4O = T4M - T4N;			 T4P = T3k - T3p;		    }		    Th = Tb + Tg;		    Tl = Tj - Tk;		    T3w = FNMS(Tl, T3v, Th * T3u);		    T4T = FMA(Tl, T3u, Th * T3v);		    T4R = T3t - T3w;		    T4U = T4S - T4T;		    Tm = FNMS(Ti, Tl, T2 * Th);		    To = FMA(T2, Tl, Ti * Th);		    {			 E TR, TS, TT, TV;			 TR = Tb - Tg;			 TS = Tj + Tk;			 TT = FMA(T2, TR, Ti * TS);			 TV = FNMS(Ti, TR, T2 * TS);			 TX = FNMS(TV, TW, TT * TU);			 T4I = FNMS(TS, T38, TR * T39);			 T3a = FMA(TR, T38, TS * T39);			 T3H = FMA(TV, TU, TT * TW);		    }		    {			 E T2V, T3b, T2Z, T3d;			 {			      E T2T, T2U, T2X, T2Y;			      T2T = T2 * TM;			      T2U = Ti * TO;			      T2V = T2T - T2U;			      T3b = T2T + T2U;			      T2X = T2 * TO;			      T2Y = Ti * TM;			      T2Z = T2X + T2Y;			      T3d = T2X - T2Y;			 }			 T31 = FMA(T2V, T2W, T2Z * T30);			 T4Y = FNMS(T2Z, T2W, T2V * T30);			 T3f = FNMS(T3d, T3e, T3b * T3c);			 T4J = FMA(T3d, T3c, T3b * T3e);		    }		    {			 E T23, T25, T1Q, T1S;			 {			      E T2C, T2E, T21, T22;			      T2C = FNMS(Ti, T1Y, T2 * T1W);			      T2E = FMA(T2, T1Y, Ti * T1W);			      T2G = FMA(T2C, T2D, T2E * T2F);			      T4s = FNMS(T2E, T2D, T2C * T2F);			      T21 = T1K + T1L;			      T22 = T1N - T1O;			      T23 = FNMS(Ti, T22, T2 * T21);			      T4r = FMA(T22, T2z, T21 * T2A);			      T25 = FMA(T2, T22, Ti * T21);			      T2B = FNMS(T22, T2A, T21 * T2z);			 }			 T4q = T2B - T2G;			 T4t = T4r - T4s;			 T27 = FMA(T23, T24, T25 * T26);			 T4a = FNMS(T25, T24, T23 * T26);			 {			      E T2I, T2K, T1M, T1P;			      T2I = T2o + T2p;			      T2K = T2s - T2t;			      T2M = FNMS(T2K, T2L, T2I * T2J);			      T4m = FMA(T2K, T2J, T2I * T2L);			      T1M = T1K - T1L;			      T1P = T1N + T1O;			      T1Q = FMA(T2, T1M, Ti * T1P);			      T4n = FNMS(T1P, T2N, T1M * T2O);			      T1S = FNMS(Ti, T1M, T2 * T1P);			      T2P = FMA(T1M, T2N, T1P * T2O);			 }			 T4l = T2M - T2P;			 T4o = T4m - T4n;			 T1U = FNMS(T1S, T1T, T1Q * T1R);			 T44 = FMA(T1S, T1R, T1Q * T1T);		    }	       }	  }	  {	       E T1i, T7V, T6i, T7D, T42, T5e, T5A, T60, T6o, T6Y, TL, T6f, T3F, T5t, T7I;	       E T8q, T7W, T8c, T3Q, T8p, T5w, T89, T4d, T61, T5f, T5D, T2a, T6t, T7O, T7C;	       E T7g, T6Z, T4w, T64, T65, T4F, T5i, T5I, T5L, T5j, T2S, T7l, T7y, T6A, T6F;	       E T73, T7i, T72, T4X, T67, T68, T56, T5l, T5P, T5S, T5m, T3z, T7q, T7z, T6L;	       E T6Q, T76, T7n, T75;	       {		    E TY, T6g, T3W, T41;		    TY = TQ + TX;		    T1i = TY + T1h;		    T7V = T1h - TY;		    T6g = T3G + T3H;		    T6i = T6g - T6h;		    T7D = T6g + T6h;		    T3W = T3U + T3V;		    T41 = T3X - T40;		    T42 = FNMS(KP923879532, T41, KP382683432 * T3W);		    T5e = FMA(KP923879532, T3W, KP382683432 * T41);	       }	       {		    E T5y, T5z, T6m, T6n;		    T5y = T3U - T3V;		    T5z = T3X + T40;		    T5A = FNMS(KP382683432, T5z, KP923879532 * T5y);		    T60 = FMA(KP382683432, T5y, KP923879532 * T5z);		    T6m = T6k - T6l;		    T6n = T1s - T1D;		    T6o = T6m - T6n;		    T6Y = T6n + T6m;	       }	       {		    E Tr, T3B, Tq, T7H, T8a, T7F;		    Tq = FMA(Tm, Tn, To * Tp);		    Tr = T1 + Tq;		    T3B = T1 - Tq;		    TL = Tr + TK;		    T6f = Tr - TK;		    T3F = T3B - T3E;		    T5t = T3B + T3E;		    T7F = FNMS(To, Tn, Tm * Tp);		    T7H = T7F + T7G;		    T8a = T7G - T7F;		    T7I = T7E + T7H;		    T8q = T8b + T8a;		    T7W = T7H - T7E;		    T8c = T8a - T8b;	       }	       {		    E T3P, T5v, T3K, T5u, T3I, T3J;		    T3P = T3L + T3O;		    T5v = T3L - T3O;		    T3I = T3G - T3H;		    T3J = TQ - TX;		    T3K = T3I - T3J;		    T5u = T3J + T3I;		    T3Q = KP707106781 * (T3K - T3P);		    T8p = KP707106781 * (T5v - T5u);		    T5w = KP707106781 * (T5u + T5v);		    T89 = KP707106781 * (T3K + T3P);	       }	       {		    E T47, T5B, T4c, T5C;		    {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -