📄 t2_32.c
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul 5 21:30:26 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -twiddle-log3 -n 32 -name t2_32 -include t.h *//* * This function contains 488 FP additions, 280 FP multiplications, * (or, 376 additions, 168 multiplications, 112 fused multiply/add), * 204 stack variables, and 128 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twiddle.ml,v 1.16 2003/04/16 19:51:27 athena Exp $ */#include "t.h"static const R *t2_32(R *ri, R *ii, const R *W, stride ios, int m, int dist){ DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); int i; for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 8) { E T1, T7G, Tn, Tp, T3t, T4S, TQ, T3G, T49, T20, T2n, T4y, T1J, T43, T2w; E T4z, T36, T4Z, TK, T8b, T40, T6l, T3U, T6k, T1h, T3L, T1D, T3V, T1s, T3X; E T3E, T7E, T3O, T6h, T2k, T6w, T4i, T4x, T3q, T6I, T4O, T4P, T3w, T4T, T4R; E T4U, Tm, To, TX, T4I, T3a, T3H, T31, T4Y, T3f, T4J, T2G, T4s, T4r, T2B; E T4q, T4t, T27, T4a, T2M, T4m, T4n, T2P, T4l, T4o, T1U, T44; T1 = ri[0]; T7G = ii[0]; Tn = ri[WS(ios, 16)]; Tp = ii[WS(ios, 16)]; { E Tv, Tz, TE, TI, TP, TN, TU, TW, T12, T16, T1k, T1b, T1f, T1l, T24; E T1z, T1w, T1u, T1q, T1o, T1B, T1X, T1Z, T1T, T1R, T1I, T1G, T26, T2O, T3e; E T3m, T3o, T3u, T3v, T3c, T30, T2W, T33, T35, T38, T39, T2N, T2r, T2v, T2m; E T2l, T2i, T2g, T2z, T2A, T2D, T2F, T2L, T2J, T2, Ti, T3, Tc, TF, TC; E TG, TB, Tu, T1a, T15, Ty, T1t, T1Y, T1W, T1v, TH, T1y, T11, TD, T1A; E T1e, T4g, T3k, T1n, T1p, T2e, T4M, TM, T1K, T1O, TO, T1L, T1N, Ta, Tb; E T2t, Tk, T2o, Tf, Tg, T2s, Tj, T2p; Tv = ri[WS(ios, 8)]; Tz = ii[WS(ios, 8)]; TE = ri[WS(ios, 24)]; TI = ii[WS(ios, 24)]; TP = ii[WS(ios, 4)]; TN = ri[WS(ios, 4)]; TU = ri[WS(ios, 20)]; TW = ii[WS(ios, 20)]; T12 = ri[WS(ios, 28)]; T16 = ii[WS(ios, 28)]; T1k = ri[WS(ios, 2)]; T1b = ri[WS(ios, 12)]; T1f = ii[WS(ios, 12)]; T1l = ii[WS(ios, 2)]; T24 = ri[WS(ios, 22)]; T1z = ri[WS(ios, 26)]; T1w = ii[WS(ios, 10)]; T1u = ri[WS(ios, 10)]; T1q = ii[WS(ios, 18)]; T1o = ri[WS(ios, 18)]; T1B = ii[WS(ios, 26)]; T1X = ri[WS(ios, 6)]; T1Z = ii[WS(ios, 6)]; T1T = ii[WS(ios, 14)]; T1R = ri[WS(ios, 14)]; T1I = ii[WS(ios, 30)]; T1G = ri[WS(ios, 30)]; T26 = ii[WS(ios, 22)]; T2O = ii[WS(ios, 13)]; T3e = ii[WS(ios, 23)]; T3m = ri[WS(ios, 19)]; T3o = ii[WS(ios, 19)]; T3u = ri[WS(ios, 11)]; T3v = ii[WS(ios, 11)]; T3c = ri[WS(ios, 23)]; T30 = ii[WS(ios, 31)]; T2W = ri[WS(ios, 31)]; T33 = ri[WS(ios, 15)]; T35 = ii[WS(ios, 15)]; T38 = ri[WS(ios, 7)]; T39 = ii[WS(ios, 7)]; T2N = ri[WS(ios, 13)]; T2r = ri[WS(ios, 25)]; T2v = ii[WS(ios, 25)]; T2m = ii[WS(ios, 9)]; T2l = ri[WS(ios, 9)]; T2i = ii[WS(ios, 17)]; T2g = ri[WS(ios, 17)]; T2z = ri[WS(ios, 5)]; T2A = ii[WS(ios, 5)]; T2D = ri[WS(ios, 21)]; T2F = ii[WS(ios, 21)]; T2L = ii[WS(ios, 29)]; T2J = ri[WS(ios, 29)]; { E T2c, T2d, T3i, T3j, T3s, T3r, T4, T7, T5, T8, T6, T9, T14, T1d, Ts; E T18, T19, T1c, Te, Td, Tt, Tw, T13, TZ, T10, Tx; T2c = ri[WS(ios, 1)]; T2d = ii[WS(ios, 1)]; T3i = ri[WS(ios, 3)]; T3j = ii[WS(ios, 3)]; T3s = ii[WS(ios, 27)]; T3r = ri[WS(ios, 27)]; T2 = W[6]; Ti = W[7]; T3 = W[4]; Tc = W[5]; T4 = W[2]; T7 = W[3]; T5 = W[0]; T8 = W[1]; T6 = T4 * T5; T9 = T7 * T8; T14 = Ti * T5; T1d = Tc * T4; Ts = T3 * T5; T18 = T3 * T4; T19 = Tc * T7; T1c = T3 * T7; Te = T7 * T5; Td = T4 * T8; Tt = Tc * T8; Tw = T3 * T8; TF = T2 * T7; T13 = T2 * T8; TC = Ti * T7; TG = Ti * T4; TZ = T2 * T5; T10 = Ti * T8; TB = T2 * T4; Tx = Tc * T5; Tu = Ts + Tt; T1a = T18 - T19; T15 = T13 + T14; Ty = Tw - Tx; T1t = Ts - Tt; T1Y = T1c - T1d; T1W = T18 + T19; T1v = Tw + Tx; TH = TF - TG; T1y = TZ + T10; T11 = TZ - T10; TD = TB + TC; T1A = T13 - T14; T1e = T1c + T1d; T3t = FMA(T2, T3r, Ti * T3s); T4g = FNMS(T8, T2c, T5 * T2d); T4S = FNMS(Ti, T3r, T2 * T3s); T3k = FMA(T4, T3i, T7 * T3j); T1n = FMA(T2, T3, Ti * Tc); T1p = FNMS(Ti, T3, T2 * Tc); T2e = FMA(T5, T2c, T8 * T2d); T4M = FNMS(T7, T3i, T4 * T3j); TM = T6 - T9; T1K = T3 * TM; T1O = Tc * TM; TO = Td + Te; T1L = Tc * TO; T1N = T3 * TO; Ta = T6 + T9; Tb = T3 * Ta; T2t = Ti * Ta; Tk = Tc * Ta; T2o = T2 * Ta; Tf = Td - Te; Tg = Tc * Tf; T2s = T2 * Tf; Tj = T3 * Tf; T2p = Ti * Tf; } TQ = FMA(TM, TN, TO * TP); T3G = FNMS(TO, TN, TM * TP); T49 = FMA(T1Y, T1X, T1W * T1Z); T20 = FNMS(T1Y, T1Z, T1W * T1X); T2n = FMA(T3, T2l, Tc * T2m); T4y = FNMS(Tc, T2l, T3 * T2m); { E T1F, T1H, TA, TJ; T1F = TB - TC; T1H = TF + TG; T1J = FMA(T1F, T1G, T1H * T1I); T43 = FNMS(T1H, T1G, T1F * T1I); { E T2q, T2u, T32, T34; T2q = T2o - T2p; T2u = T2s + T2t; T2w = FMA(T2q, T2r, T2u * T2v); T4z = FNMS(T2u, T2r, T2q * T2v); T32 = FMA(T2, T1a, Ti * T1e); T34 = FNMS(Ti, T1a, T2 * T1e); T36 = FNMS(T34, T35, T32 * T33); T4Z = FMA(T34, T33, T32 * T35); } TA = FNMS(Ty, Tz, Tu * Tv); TJ = FNMS(TH, TI, TD * TE); TK = TA + TJ; T8b = TA - TJ; { E T3Y, T3Z, T3S, T3T; T3Y = FNMS(T1v, T1u, T1t * T1w); T3Z = FMA(T1A, T1z, T1y * T1B); T40 = T3Y - T3Z; T6l = T3Y + T3Z; T3S = FMA(Tf, T1k, Ta * T1l); T3T = FMA(T1p, T1o, T1n * T1q); T3U = T3S - T3T; T6k = T3S + T3T; } } { E T17, T1g, Th, Tl; T17 = FMA(T11, T12, T15 * T16); T1g = FMA(T1a, T1b, T1e * T1f); T1h = T17 + T1g; T3L = T17 - T1g; { E T1x, T1C, T1m, T1r; T1x = FMA(T1t, T1u, T1v * T1w); T1C = FNMS(T1A, T1B, T1y * T1z); T1D = T1x + T1C; T3V = T1x - T1C; T1m = FNMS(Tf, T1l, Ta * T1k); T1r = FNMS(T1p, T1q, T1n * T1o); T1s = T1m + T1r; T3X = T1m - T1r; } { E T3C, T3D, T3M, T3N; T3C = FMA(Ty, Tv, Tu * Tz); T3D = FMA(TH, TE, TD * TI); T3E = T3C - T3D; T7E = T3C + T3D; T3M = FNMS(T15, T12, T11 * T16); T3N = FNMS(T1e, T1b, T1a * T1f); T3O = T3M - T3N; T6h = T3M + T3N; { E T2j, T4h, T2f, T2h; T2f = FMA(T2, T1t, Ti * T1v); T2h = FNMS(Ti, T1t, T2 * T1v); T2j = FNMS(T2h, T2i, T2f * T2g); T4h = FMA(T2h, T2g, T2f * T2i); T2k = T2e + T2j; T6w = T4g + T4h; T4i = T4g - T4h; T4x = T2e - T2j; } } { E T3p, T4N, T3l, T3n; T3l = FNMS(Ti, Ty, T2 * Tu); T3n = FMA(T2, Ty, Ti * Tu); T3p = FMA(T3l, T3m, T3n * T3o); T4N = FNMS(T3n, T3m, T3l * T3o); T3q = T3k + T3p; T6I = T4M + T4N; T4O = T4M - T4N; T4P = T3k - T3p; } Th = Tb + Tg; Tl = Tj - Tk; T3w = FNMS(Tl, T3v, Th * T3u); T4T = FMA(Tl, T3u, Th * T3v); T4R = T3t - T3w; T4U = T4S - T4T; Tm = FNMS(Ti, Tl, T2 * Th); To = FMA(T2, Tl, Ti * Th); { E TR, TS, TT, TV; TR = Tb - Tg; TS = Tj + Tk; TT = FMA(T2, TR, Ti * TS); TV = FNMS(Ti, TR, T2 * TS); TX = FNMS(TV, TW, TT * TU); T4I = FNMS(TS, T38, TR * T39); T3a = FMA(TR, T38, TS * T39); T3H = FMA(TV, TU, TT * TW); } { E T2V, T3b, T2Z, T3d; { E T2T, T2U, T2X, T2Y; T2T = T2 * TM; T2U = Ti * TO; T2V = T2T - T2U; T3b = T2T + T2U; T2X = T2 * TO; T2Y = Ti * TM; T2Z = T2X + T2Y; T3d = T2X - T2Y; } T31 = FMA(T2V, T2W, T2Z * T30); T4Y = FNMS(T2Z, T2W, T2V * T30); T3f = FNMS(T3d, T3e, T3b * T3c); T4J = FMA(T3d, T3c, T3b * T3e); } { E T23, T25, T1Q, T1S; { E T2C, T2E, T21, T22; T2C = FNMS(Ti, T1Y, T2 * T1W); T2E = FMA(T2, T1Y, Ti * T1W); T2G = FMA(T2C, T2D, T2E * T2F); T4s = FNMS(T2E, T2D, T2C * T2F); T21 = T1K + T1L; T22 = T1N - T1O; T23 = FNMS(Ti, T22, T2 * T21); T4r = FMA(T22, T2z, T21 * T2A); T25 = FMA(T2, T22, Ti * T21); T2B = FNMS(T22, T2A, T21 * T2z); } T4q = T2B - T2G; T4t = T4r - T4s; T27 = FMA(T23, T24, T25 * T26); T4a = FNMS(T25, T24, T23 * T26); { E T2I, T2K, T1M, T1P; T2I = T2o + T2p; T2K = T2s - T2t; T2M = FNMS(T2K, T2L, T2I * T2J); T4m = FMA(T2K, T2J, T2I * T2L); T1M = T1K - T1L; T1P = T1N + T1O; T1Q = FMA(T2, T1M, Ti * T1P); T4n = FNMS(T1P, T2N, T1M * T2O); T1S = FNMS(Ti, T1M, T2 * T1P); T2P = FMA(T1M, T2N, T1P * T2O); } T4l = T2M - T2P; T4o = T4m - T4n; T1U = FNMS(T1S, T1T, T1Q * T1R); T44 = FMA(T1S, T1R, T1Q * T1T); } } } { E T1i, T7V, T6i, T7D, T42, T5e, T5A, T60, T6o, T6Y, TL, T6f, T3F, T5t, T7I; E T8q, T7W, T8c, T3Q, T8p, T5w, T89, T4d, T61, T5f, T5D, T2a, T6t, T7O, T7C; E T7g, T6Z, T4w, T64, T65, T4F, T5i, T5I, T5L, T5j, T2S, T7l, T7y, T6A, T6F; E T73, T7i, T72, T4X, T67, T68, T56, T5l, T5P, T5S, T5m, T3z, T7q, T7z, T6L; E T6Q, T76, T7n, T75; { E TY, T6g, T3W, T41; TY = TQ + TX; T1i = TY + T1h; T7V = T1h - TY; T6g = T3G + T3H; T6i = T6g - T6h; T7D = T6g + T6h; T3W = T3U + T3V; T41 = T3X - T40; T42 = FNMS(KP923879532, T41, KP382683432 * T3W); T5e = FMA(KP923879532, T3W, KP382683432 * T41); } { E T5y, T5z, T6m, T6n; T5y = T3U - T3V; T5z = T3X + T40; T5A = FNMS(KP382683432, T5z, KP923879532 * T5y); T60 = FMA(KP382683432, T5y, KP923879532 * T5z); T6m = T6k - T6l; T6n = T1s - T1D; T6o = T6m - T6n; T6Y = T6n + T6m; } { E Tr, T3B, Tq, T7H, T8a, T7F; Tq = FMA(Tm, Tn, To * Tp); Tr = T1 + Tq; T3B = T1 - Tq; TL = Tr + TK; T6f = Tr - TK; T3F = T3B - T3E; T5t = T3B + T3E; T7F = FNMS(To, Tn, Tm * Tp); T7H = T7F + T7G; T8a = T7G - T7F; T7I = T7E + T7H; T8q = T8b + T8a; T7W = T7H - T7E; T8c = T8a - T8b; } { E T3P, T5v, T3K, T5u, T3I, T3J; T3P = T3L + T3O; T5v = T3L - T3O; T3I = T3G - T3H; T3J = TQ - TX; T3K = T3I - T3J; T5u = T3J + T3I; T3Q = KP707106781 * (T3K - T3P); T8p = KP707106781 * (T5v - T5u); T5w = KP707106781 * (T5u + T5v); T89 = KP707106781 * (T3K + T3P); } { E T47, T5B, T4c, T5C; {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -