⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 m1_64.c

📁 fftw-3.0.1
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:29:42 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw_noinline -compact -variables 4 -n 64 -name m1_64 -include n.h *//* * This function contains 912 FP additions, 248 FP multiplications, * (or, 808 additions, 144 multiplications, 104 fused multiply/add), * 171 stack variables, and 256 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_notw_noinline.ml,v 1.1 2003/04/17 11:07:19 athena Exp $ */#include "n.h"static void m1_64_0(const R *ri, const R *ii, R *ro, R *io, stride is, stride os){     DK(KP773010453, +0.773010453362736960810906609758469800971041293);     DK(KP634393284, +0.634393284163645498215171613225493370675687095);     DK(KP098017140, +0.098017140329560601994195563888641845861136673);     DK(KP995184726, +0.995184726672196886244836953109479921575474869);     DK(KP881921264, +0.881921264348355029712756863660388349508442621);     DK(KP471396736, +0.471396736825997648556387625905254377657460319);     DK(KP290284677, +0.290284677254462367636192375817395274691476278);     DK(KP956940335, +0.956940335732208864935797886980269969482849206);     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP555570233, +0.555570233019602224742830813948532874374937191);     DK(KP195090322, +0.195090322016128267848284868477022240927691618);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     {	  E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e;	  E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I;	  E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R;	  E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C;	  E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V;	  E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O;	  E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50;	  E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z;	  E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D;	  {	       E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g;	       E T3c;	       {		    E T1, T2, T24, T25;		    T1 = ri[0];		    T2 = ri[WS(is, 32)];		    T3 = T1 + T2;		    T35 = T1 - T2;		    T24 = ii[0];		    T25 = ii[WS(is, 32)];		    T26 = T24 + T25;		    T5Y = T24 - T25;	       }	       {		    E T4, T5, T27, T28;		    T4 = ri[WS(is, 16)];		    T5 = ri[WS(is, 48)];		    T6 = T4 + T5;		    T5X = T4 - T5;		    T27 = ii[WS(is, 16)];		    T28 = ii[WS(is, 48)];		    T29 = T27 + T28;		    T36 = T27 - T28;	       }	       {		    E T8, T9, T2b, T2c;		    T8 = ri[WS(is, 8)];		    T9 = ri[WS(is, 40)];		    Ta = T8 + T9;		    T39 = T8 - T9;		    T2b = ii[WS(is, 8)];		    T2c = ii[WS(is, 40)];		    T2d = T2b + T2c;		    T38 = T2b - T2c;	       }	       {		    E Tb, Tc, T2e, T2f;		    Tb = ri[WS(is, 56)];		    Tc = ri[WS(is, 24)];		    Td = Tb + Tc;		    T3b = Tb - Tc;		    T2e = ii[WS(is, 56)];		    T2f = ii[WS(is, 24)];		    T2g = T2e + T2f;		    T3c = T2e - T2f;	       }	       {		    E T7, Te, T2a, T2h;		    T37 = T35 - T36;		    T7B = T35 + T36;		    T8F = T5Y - T5X;		    T5Z = T5X + T5Y;		    T7 = T3 + T6;		    Te = Ta + Td;		    Tf = T7 + Te;		    Td9 = T7 - Te;		    {			 E Tbz, TbA, T60, T61;			 Tbz = T26 - T29;			 TbA = Td - Ta;			 TbB = Tbz - TbA;			 TcB = TbA + Tbz;			 T60 = T3b - T3c;			 T61 = T39 + T38;			 T62 = KP707106781 * (T60 - T61);			 T7C = KP707106781 * (T61 + T60);		    }		    T2a = T26 + T29;		    T2h = T2d + T2g;		    T2i = T2a + T2h;		    TdH = T2a - T2h;		    {			 E Taf, Tag, T3a, T3d;			 Taf = T3 - T6;			 Tag = T2d - T2g;			 Tah = Taf - Tag;			 Tcb = Taf + Tag;			 T3a = T38 - T39;			 T3d = T3b + T3c;			 T3e = KP707106781 * (T3a - T3d);			 T8G = KP707106781 * (T3a + T3d);		    }	       }	  }	  {	       E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v;	       E T3r;	       {		    E Tg, Th, T2j, T2k;		    Tg = ri[WS(is, 4)];		    Th = ri[WS(is, 36)];		    Ti = Tg + Th;		    T3j = Tg - Th;		    T2j = ii[WS(is, 4)];		    T2k = ii[WS(is, 36)];		    T2l = T2j + T2k;		    T3h = T2j - T2k;	       }	       {		    E Tj, Tk, T2m, T2n;		    Tj = ri[WS(is, 20)];		    Tk = ri[WS(is, 52)];		    Tl = Tj + Tk;		    T3g = Tj - Tk;		    T2m = ii[WS(is, 20)];		    T2n = ii[WS(is, 52)];		    T2o = T2m + T2n;		    T3k = T2m - T2n;	       }	       {		    E Tn, To, T2q, T2r;		    Tn = ri[WS(is, 60)];		    To = ri[WS(is, 28)];		    Tp = Tn + To;		    T3q = Tn - To;		    T2q = ii[WS(is, 60)];		    T2r = ii[WS(is, 28)];		    T2s = T2q + T2r;		    T3o = T2q - T2r;	       }	       {		    E Tq, Tr, T2t, T2u;		    Tq = ri[WS(is, 12)];		    Tr = ri[WS(is, 44)];		    Ts = Tq + Tr;		    T3n = Tq - Tr;		    T2t = ii[WS(is, 12)];		    T2u = ii[WS(is, 44)];		    T2v = T2t + T2u;		    T3r = T2t - T2u;	       }	       {		    E Tm, Tt, Tai, Taj;		    Tm = Ti + Tl;		    Tt = Tp + Ts;		    Tu = Tm + Tt;		    TdI = Tt - Tm;		    Tai = T2l - T2o;		    Taj = Ti - Tl;		    Tak = Tai - Taj;		    TbD = Taj + Tai;	       }	       {		    E Tal, Tam, T2p, T2w;		    Tal = Tp - Ts;		    Tam = T2s - T2v;		    Tan = Tal + Tam;		    TbC = Tal - Tam;		    T2p = T2l + T2o;		    T2w = T2s + T2v;		    T2x = T2p + T2w;		    Tda = T2p - T2w;	       }	       {		    E T3i, T3l, T7E, T7F;		    T3i = T3g + T3h;		    T3l = T3j - T3k;		    T3m = FNMS(KP923879532, T3l, KP382683432 * T3i);		    T65 = FMA(KP923879532, T3i, KP382683432 * T3l);		    T7E = T3h - T3g;		    T7F = T3j + T3k;		    T7G = FNMS(KP382683432, T7F, KP923879532 * T7E);		    T8J = FMA(KP382683432, T7E, KP923879532 * T7F);	       }	       {		    E T7H, T7I, T3p, T3s;		    T7H = T3o - T3n;		    T7I = T3q + T3r;		    T7J = FMA(KP923879532, T7H, KP382683432 * T7I);		    T8I = FNMS(KP382683432, T7H, KP923879532 * T7I);		    T3p = T3n + T3o;		    T3s = T3q - T3r;		    T3t = FMA(KP382683432, T3p, KP923879532 * T3s);		    T64 = FNMS(KP923879532, T3p, KP382683432 * T3s);	       }	  }	  {	       E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I;	       E T3E;	       {		    E Tw, Tx, T2C, T2D;		    Tw = ri[WS(is, 2)];		    Tx = ri[WS(is, 34)];		    Ty = Tw + Tx;		    T3H = Tw - Tx;		    {			 E T2z, T2A, Tz, TA;			 T2z = ii[WS(is, 2)];			 T2A = ii[WS(is, 34)];			 T2B = T2z + T2A;			 T3x = T2z - T2A;			 Tz = ri[WS(is, 18)];			 TA = ri[WS(is, 50)];			 TB = Tz + TA;			 T3w = Tz - TA;		    }		    T2C = ii[WS(is, 18)];		    T2D = ii[WS(is, 50)];		    T2E = T2C + T2D;		    T3I = T2C - T2D;		    {			 E TG, TH, T3z, T2J, T2K, T3A;			 TG = ri[WS(is, 58)];			 TH = ri[WS(is, 26)];			 T3z = TG - TH;			 T2J = ii[WS(is, 58)];			 T2K = ii[WS(is, 26)];			 T3A = T2J - T2K;			 TI = TG + TH;			 T3L = T3z + T3A;			 T2L = T2J + T2K;			 T3B = T3z - T3A;		    }		    {			 E TD, TE, T3C, T2G, T2H, T3D;			 TD = ri[WS(is, 10)];			 TE = ri[WS(is, 42)];			 T3C = TD - TE;			 T2G = ii[WS(is, 10)];			 T2H = ii[WS(is, 42)];			 T3D = T2G - T2H;			 TF = TD + TE;			 T3K = T3D - T3C;			 T2I = T2G + T2H;			 T3E = T3C + T3D;		    }	       }	       {		    E TC, TJ, Taq, Tar;		    TC = Ty + TB;		    TJ = TF + TI;		    TK = TC + TJ;		    Tdd = TC - TJ;		    Taq = T2B - T2E;		    Tar = TI - TF;		    Tas = Taq - Tar;		    Tce = Tar + Taq;	       }	       {		    E Tat, Tau, T2F, T2M;		    Tat = Ty - TB;		    Tau = T2I - T2L;		    Tav = Tat - Tau;		    Tcf = Tat + Tau;		    T2F = T2B + T2E;		    T2M = T2I + T2L;		    T2N = T2F + T2M;		    Tdc = T2F - T2M;	       }	       {		    E T3y, T3F, T7M, T7N;		    T3y = T3w + T3x;		    T3F = KP707106781 * (T3B - T3E);		    T3G = T3y - T3F;		    T6G = T3y + T3F;		    T7M = T3x - T3w;		    T7N = KP707106781 * (T3K + T3L);		    T7O = T7M - T7N;		    T9k = T7M + T7N;	       }	       {		    E T7P, T7Q, T3J, T3M;		    T7P = T3H + T3I;		    T7Q = KP707106781 * (T3E + T3B);		    T7R = T7P - T7Q;		    T9l = T7P + T7Q;		    T3J = T3H - T3I;		    T3M = KP707106781 * (T3K - T3L);		    T3N = T3J - T3M;		    T6H = T3J + T3M;	       }	  }	  {	       E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c;	       E T5O;	       {		    E T1x, T1y, T54, T55;		    T1x = ri[WS(is, 63)];		    T1y = ri[WS(is, 31)];		    T1z = T1x + T1y;		    T53 = T1x - T1y;		    {			 E T5J, T5K, T1A, T1B;			 T5J = ii[WS(is, 63)];			 T5K = ii[WS(is, 31)];			 T5L = T5J - T5K;			 Tbo = T5J + T5K;			 T1A = ri[WS(is, 15)];			 T1B = ri[WS(is, 47)];			 T1C = T1A + T1B;			 T5I = T1A - T1B;		    }		    T54 = ii[WS(is, 15)];		    T55 = ii[WS(is, 47)];		    T56 = T54 - T55;		    Tbp = T54 + T55;		    {			 E T1H, T1I, T5d, T5e, T5f, T5g;			 T1H = ri[WS(is, 55)];			 T1I = ri[WS(is, 23)];			 T5d = T1H - T1I;			 T5e = ii[WS(is, 55)];			 T5f = ii[WS(is, 23)];			 T5g = T5e - T5f;			 T1J = T1H + T1I;			 Tb9 = T5e + T5f;			 T5h = T5d + T5g;			 T5N = T5d - T5g;		    }		    {			 E T1E, T1F, T5b, T58, T59, T5a;			 T1E = ri[WS(is, 7)];			 T1F = ri[WS(is, 39)];			 T5b = T1E - T1F;			 T58 = ii[WS(is, 7)];			 T59 = ii[WS(is, 39)];			 T5a = T58 - T59;			 T1G = T1E + T1F;			 Tb8 = T58 + T59;			 T5c = T5a - T5b;			 T5O = T5b + T5a;		    }	       }	       {		    E T1D, T1K, Tbq, Tbr;		    T1D = T1z + T1C;		    T1K = T1G + T1J;		    T1L = T1D + T1K;		    Tdv = T1D - T1K;		    Tbq = Tbo - Tbp;		    Tbr = T1J - T1G;		    Tbs = Tbq - Tbr;		    Tcw = Tbr + Tbq;	       }	       {		    E TdA, TdB, T57, T5i;		    TdA = Tbo + Tbp;		    TdB = Tb8 + Tb9;		    TdC = TdA - TdB;		    Teo = TdA + TdB;		    T57 = T53 - T56;		    T5i = KP707106781 * (T5c - T5h);		    T5j = T57 - T5i;		    T6V = T57 + T5i;	       }	       {		    E T5M, T5P, T8w, T8x;		    T5M = T5I + T5L;		    T5P = KP707106781 * (T5N - T5O);		    T5Q = T5M - T5P;		    T6Y = T5M + T5P;		    T8w = T5L - T5I;		    T8x = KP707106781 * (T5c + T5h);		    T8y = T8w - T8x;		    T9C = T8w + T8x;	       }	       {		    E Tb7, Tba, T8l, T8m;		    Tb7 = T1z - T1C;		    Tba = Tb8 - Tb9;		    Tbb = Tb7 - Tba;		    Tct = Tb7 + Tba;		    T8l = T53 + T56;		    T8m = KP707106781 * (T5O + T5N);		    T8n = T8l - T8m;		    T9z = T8l + T8m;	       }	  }	  {	       E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X;	       E T3X;	       {		    E TL, TM, T2R, T2S;		    TL = ri[WS(is, 62)];		    TM = ri[WS(is, 30)];		    TN = TL + TM;		    T40 = TL - TM;		    {			 E T2O, T2P, TO, TP;			 T2O = ii[WS(is, 62)];			 T2P = ii[WS(is, 30)];			 T2Q = T2O + T2P;			 T3Q = T2O - T2P;			 TO = ri[WS(is, 14)];			 TP = ri[WS(is, 46)];			 TQ = TO + TP;			 T3P = TO - TP;		    }		    T2R = ii[WS(is, 14)];		    T2S = ii[WS(is, 46)];		    T2T = T2R + T2S;		    T41 = T2R - T2S;		    {			 E TV, TW, T3S, T2Y, T2Z, T3T;			 TV = ri[WS(is, 54)];			 TW = ri[WS(is, 22)];			 T3S = TV - TW;			 T2Y = ii[WS(is, 54)];			 T2Z = ii[WS(is, 22)];			 T3T = T2Y - T2Z;			 TX = TV + TW;			 T44 = T3S + T3T;			 T30 = T2Y + T2Z;			 T3U = T3S - T3T;		    }		    {			 E TS, TT, T3V, T2V, T2W, T3W;			 TS = ri[WS(is, 6)];			 TT = ri[WS(is, 38)];			 T3V = TS - TT;			 T2V = ii[WS(is, 6)];			 T2W = ii[WS(is, 38)];			 T3W = T2V - T2W;			 TU = TS + TT;			 T43 = T3W - T3V;			 T2X = T2V + T2W;			 T3X = T3V + T3W;		    }	       }	       {		    E TR, TY, Tax, Tay;		    TR = TN + TQ;		    TY = TU + TX;		    TZ = TR + TY;		    Tdf = TR - TY;		    Tax = T2Q - T2T;		    Tay = TX - TU;		    Taz = Tax - Tay;		    Tch = Tay + Tax;	       }	       {		    E TaA, TaB, T2U, T31;		    TaA = TN - TQ;		    TaB = T2X - T30;		    TaC = TaA - TaB;		    Tci = TaA + TaB;		    T2U = T2Q + T2T;		    T31 = T2X + T30;		    T32 = T2U + T31;		    Tdg = T2U - T31;	       }	       {		    E T3R, T3Y, T7T, T7U;		    T3R = T3P + T3Q;		    T3Y = KP707106781 * (T3U - T3X);		    T3Z = T3R - T3Y;		    T6J = T3R + T3Y;		    T7T = T40 + T41;		    T7U = KP707106781 * (T3X + T3U);		    T7V = T7T - T7U;		    T9n = T7T + T7U;	       }	       {		    E T7W, T7X, T42, T45;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -