📄 m1_64.c
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul 5 21:29:42 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw_noinline -compact -variables 4 -n 64 -name m1_64 -include n.h *//* * This function contains 912 FP additions, 248 FP multiplications, * (or, 808 additions, 144 multiplications, 104 fused multiply/add), * 171 stack variables, and 256 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_notw_noinline.ml,v 1.1 2003/04/17 11:07:19 athena Exp $ */#include "n.h"static void m1_64_0(const R *ri, const R *ii, R *ro, R *io, stride is, stride os){ DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I; E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C; E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z; E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D; { E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; E T3c; { E T1, T2, T24, T25; T1 = ri[0]; T2 = ri[WS(is, 32)]; T3 = T1 + T2; T35 = T1 - T2; T24 = ii[0]; T25 = ii[WS(is, 32)]; T26 = T24 + T25; T5Y = T24 - T25; } { E T4, T5, T27, T28; T4 = ri[WS(is, 16)]; T5 = ri[WS(is, 48)]; T6 = T4 + T5; T5X = T4 - T5; T27 = ii[WS(is, 16)]; T28 = ii[WS(is, 48)]; T29 = T27 + T28; T36 = T27 - T28; } { E T8, T9, T2b, T2c; T8 = ri[WS(is, 8)]; T9 = ri[WS(is, 40)]; Ta = T8 + T9; T39 = T8 - T9; T2b = ii[WS(is, 8)]; T2c = ii[WS(is, 40)]; T2d = T2b + T2c; T38 = T2b - T2c; } { E Tb, Tc, T2e, T2f; Tb = ri[WS(is, 56)]; Tc = ri[WS(is, 24)]; Td = Tb + Tc; T3b = Tb - Tc; T2e = ii[WS(is, 56)]; T2f = ii[WS(is, 24)]; T2g = T2e + T2f; T3c = T2e - T2f; } { E T7, Te, T2a, T2h; T37 = T35 - T36; T7B = T35 + T36; T8F = T5Y - T5X; T5Z = T5X + T5Y; T7 = T3 + T6; Te = Ta + Td; Tf = T7 + Te; Td9 = T7 - Te; { E Tbz, TbA, T60, T61; Tbz = T26 - T29; TbA = Td - Ta; TbB = Tbz - TbA; TcB = TbA + Tbz; T60 = T3b - T3c; T61 = T39 + T38; T62 = KP707106781 * (T60 - T61); T7C = KP707106781 * (T61 + T60); } T2a = T26 + T29; T2h = T2d + T2g; T2i = T2a + T2h; TdH = T2a - T2h; { E Taf, Tag, T3a, T3d; Taf = T3 - T6; Tag = T2d - T2g; Tah = Taf - Tag; Tcb = Taf + Tag; T3a = T38 - T39; T3d = T3b + T3c; T3e = KP707106781 * (T3a - T3d); T8G = KP707106781 * (T3a + T3d); } } } { E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; E T3r; { E Tg, Th, T2j, T2k; Tg = ri[WS(is, 4)]; Th = ri[WS(is, 36)]; Ti = Tg + Th; T3j = Tg - Th; T2j = ii[WS(is, 4)]; T2k = ii[WS(is, 36)]; T2l = T2j + T2k; T3h = T2j - T2k; } { E Tj, Tk, T2m, T2n; Tj = ri[WS(is, 20)]; Tk = ri[WS(is, 52)]; Tl = Tj + Tk; T3g = Tj - Tk; T2m = ii[WS(is, 20)]; T2n = ii[WS(is, 52)]; T2o = T2m + T2n; T3k = T2m - T2n; } { E Tn, To, T2q, T2r; Tn = ri[WS(is, 60)]; To = ri[WS(is, 28)]; Tp = Tn + To; T3q = Tn - To; T2q = ii[WS(is, 60)]; T2r = ii[WS(is, 28)]; T2s = T2q + T2r; T3o = T2q - T2r; } { E Tq, Tr, T2t, T2u; Tq = ri[WS(is, 12)]; Tr = ri[WS(is, 44)]; Ts = Tq + Tr; T3n = Tq - Tr; T2t = ii[WS(is, 12)]; T2u = ii[WS(is, 44)]; T2v = T2t + T2u; T3r = T2t - T2u; } { E Tm, Tt, Tai, Taj; Tm = Ti + Tl; Tt = Tp + Ts; Tu = Tm + Tt; TdI = Tt - Tm; Tai = T2l - T2o; Taj = Ti - Tl; Tak = Tai - Taj; TbD = Taj + Tai; } { E Tal, Tam, T2p, T2w; Tal = Tp - Ts; Tam = T2s - T2v; Tan = Tal + Tam; TbC = Tal - Tam; T2p = T2l + T2o; T2w = T2s + T2v; T2x = T2p + T2w; Tda = T2p - T2w; } { E T3i, T3l, T7E, T7F; T3i = T3g + T3h; T3l = T3j - T3k; T3m = FNMS(KP923879532, T3l, KP382683432 * T3i); T65 = FMA(KP923879532, T3i, KP382683432 * T3l); T7E = T3h - T3g; T7F = T3j + T3k; T7G = FNMS(KP382683432, T7F, KP923879532 * T7E); T8J = FMA(KP382683432, T7E, KP923879532 * T7F); } { E T7H, T7I, T3p, T3s; T7H = T3o - T3n; T7I = T3q + T3r; T7J = FMA(KP923879532, T7H, KP382683432 * T7I); T8I = FNMS(KP382683432, T7H, KP923879532 * T7I); T3p = T3n + T3o; T3s = T3q - T3r; T3t = FMA(KP382683432, T3p, KP923879532 * T3s); T64 = FNMS(KP923879532, T3p, KP382683432 * T3s); } } { E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I; E T3E; { E Tw, Tx, T2C, T2D; Tw = ri[WS(is, 2)]; Tx = ri[WS(is, 34)]; Ty = Tw + Tx; T3H = Tw - Tx; { E T2z, T2A, Tz, TA; T2z = ii[WS(is, 2)]; T2A = ii[WS(is, 34)]; T2B = T2z + T2A; T3x = T2z - T2A; Tz = ri[WS(is, 18)]; TA = ri[WS(is, 50)]; TB = Tz + TA; T3w = Tz - TA; } T2C = ii[WS(is, 18)]; T2D = ii[WS(is, 50)]; T2E = T2C + T2D; T3I = T2C - T2D; { E TG, TH, T3z, T2J, T2K, T3A; TG = ri[WS(is, 58)]; TH = ri[WS(is, 26)]; T3z = TG - TH; T2J = ii[WS(is, 58)]; T2K = ii[WS(is, 26)]; T3A = T2J - T2K; TI = TG + TH; T3L = T3z + T3A; T2L = T2J + T2K; T3B = T3z - T3A; } { E TD, TE, T3C, T2G, T2H, T3D; TD = ri[WS(is, 10)]; TE = ri[WS(is, 42)]; T3C = TD - TE; T2G = ii[WS(is, 10)]; T2H = ii[WS(is, 42)]; T3D = T2G - T2H; TF = TD + TE; T3K = T3D - T3C; T2I = T2G + T2H; T3E = T3C + T3D; } } { E TC, TJ, Taq, Tar; TC = Ty + TB; TJ = TF + TI; TK = TC + TJ; Tdd = TC - TJ; Taq = T2B - T2E; Tar = TI - TF; Tas = Taq - Tar; Tce = Tar + Taq; } { E Tat, Tau, T2F, T2M; Tat = Ty - TB; Tau = T2I - T2L; Tav = Tat - Tau; Tcf = Tat + Tau; T2F = T2B + T2E; T2M = T2I + T2L; T2N = T2F + T2M; Tdc = T2F - T2M; } { E T3y, T3F, T7M, T7N; T3y = T3w + T3x; T3F = KP707106781 * (T3B - T3E); T3G = T3y - T3F; T6G = T3y + T3F; T7M = T3x - T3w; T7N = KP707106781 * (T3K + T3L); T7O = T7M - T7N; T9k = T7M + T7N; } { E T7P, T7Q, T3J, T3M; T7P = T3H + T3I; T7Q = KP707106781 * (T3E + T3B); T7R = T7P - T7Q; T9l = T7P + T7Q; T3J = T3H - T3I; T3M = KP707106781 * (T3K - T3L); T3N = T3J - T3M; T6H = T3J + T3M; } } { E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c; E T5O; { E T1x, T1y, T54, T55; T1x = ri[WS(is, 63)]; T1y = ri[WS(is, 31)]; T1z = T1x + T1y; T53 = T1x - T1y; { E T5J, T5K, T1A, T1B; T5J = ii[WS(is, 63)]; T5K = ii[WS(is, 31)]; T5L = T5J - T5K; Tbo = T5J + T5K; T1A = ri[WS(is, 15)]; T1B = ri[WS(is, 47)]; T1C = T1A + T1B; T5I = T1A - T1B; } T54 = ii[WS(is, 15)]; T55 = ii[WS(is, 47)]; T56 = T54 - T55; Tbp = T54 + T55; { E T1H, T1I, T5d, T5e, T5f, T5g; T1H = ri[WS(is, 55)]; T1I = ri[WS(is, 23)]; T5d = T1H - T1I; T5e = ii[WS(is, 55)]; T5f = ii[WS(is, 23)]; T5g = T5e - T5f; T1J = T1H + T1I; Tb9 = T5e + T5f; T5h = T5d + T5g; T5N = T5d - T5g; } { E T1E, T1F, T5b, T58, T59, T5a; T1E = ri[WS(is, 7)]; T1F = ri[WS(is, 39)]; T5b = T1E - T1F; T58 = ii[WS(is, 7)]; T59 = ii[WS(is, 39)]; T5a = T58 - T59; T1G = T1E + T1F; Tb8 = T58 + T59; T5c = T5a - T5b; T5O = T5b + T5a; } } { E T1D, T1K, Tbq, Tbr; T1D = T1z + T1C; T1K = T1G + T1J; T1L = T1D + T1K; Tdv = T1D - T1K; Tbq = Tbo - Tbp; Tbr = T1J - T1G; Tbs = Tbq - Tbr; Tcw = Tbr + Tbq; } { E TdA, TdB, T57, T5i; TdA = Tbo + Tbp; TdB = Tb8 + Tb9; TdC = TdA - TdB; Teo = TdA + TdB; T57 = T53 - T56; T5i = KP707106781 * (T5c - T5h); T5j = T57 - T5i; T6V = T57 + T5i; } { E T5M, T5P, T8w, T8x; T5M = T5I + T5L; T5P = KP707106781 * (T5N - T5O); T5Q = T5M - T5P; T6Y = T5M + T5P; T8w = T5L - T5I; T8x = KP707106781 * (T5c + T5h); T8y = T8w - T8x; T9C = T8w + T8x; } { E Tb7, Tba, T8l, T8m; Tb7 = T1z - T1C; Tba = Tb8 - Tb9; Tbb = Tb7 - Tba; Tct = Tb7 + Tba; T8l = T53 + T56; T8m = KP707106781 * (T5O + T5N); T8n = T8l - T8m; T9z = T8l + T8m; } } { E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X; E T3X; { E TL, TM, T2R, T2S; TL = ri[WS(is, 62)]; TM = ri[WS(is, 30)]; TN = TL + TM; T40 = TL - TM; { E T2O, T2P, TO, TP; T2O = ii[WS(is, 62)]; T2P = ii[WS(is, 30)]; T2Q = T2O + T2P; T3Q = T2O - T2P; TO = ri[WS(is, 14)]; TP = ri[WS(is, 46)]; TQ = TO + TP; T3P = TO - TP; } T2R = ii[WS(is, 14)]; T2S = ii[WS(is, 46)]; T2T = T2R + T2S; T41 = T2R - T2S; { E TV, TW, T3S, T2Y, T2Z, T3T; TV = ri[WS(is, 54)]; TW = ri[WS(is, 22)]; T3S = TV - TW; T2Y = ii[WS(is, 54)]; T2Z = ii[WS(is, 22)]; T3T = T2Y - T2Z; TX = TV + TW; T44 = T3S + T3T; T30 = T2Y + T2Z; T3U = T3S - T3T; } { E TS, TT, T3V, T2V, T2W, T3W; TS = ri[WS(is, 6)]; TT = ri[WS(is, 38)]; T3V = TS - TT; T2V = ii[WS(is, 6)]; T2W = ii[WS(is, 38)]; T3W = T2V - T2W; TU = TS + TT; T43 = T3W - T3V; T2X = T2V + T2W; T3X = T3V + T3W; } } { E TR, TY, Tax, Tay; TR = TN + TQ; TY = TU + TX; TZ = TR + TY; Tdf = TR - TY; Tax = T2Q - T2T; Tay = TX - TU; Taz = Tax - Tay; Tch = Tay + Tax; } { E TaA, TaB, T2U, T31; TaA = TN - TQ; TaB = T2X - T30; TaC = TaA - TaB; Tci = TaA + TaB; T2U = T2Q + T2T; T31 = T2X + T30; T32 = T2U + T31; Tdg = T2U - T31; } { E T3R, T3Y, T7T, T7U; T3R = T3P + T3Q; T3Y = KP707106781 * (T3U - T3X); T3Z = T3R - T3Y; T6J = T3R + T3Y; T7T = T40 + T41; T7U = KP707106781 * (T3X + T3U); T7V = T7T - T7U; T9n = T7T + T7U; } { E T7W, T7X, T42, T45;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -