⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_9.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:30:00 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 9 -name t1_9 -include t.h *//* * This function contains 96 FP additions, 72 FP multiplications, * (or, 60 additions, 36 multiplications, 36 fused multiply/add), * 41 stack variables, and 36 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twiddle.ml,v 1.16 2003/04/16 19:51:27 athena Exp $ */#include "t.h"static const R *t1_9(R *ri, R *ii, const R *W, stride ios, int m, int dist){     DK(KP939692620, +0.939692620785908384054109277324731469936208134);     DK(KP342020143, +0.342020143325668733044099614682259580763083368);     DK(KP984807753, +0.984807753012208059366743024589523013670643252);     DK(KP173648177, +0.173648177666930348851716626769314796000375677);     DK(KP642787609, +0.642787609686539326322643409907263432907559884);     DK(KP766044443, +0.766044443118978035202392650555416673935832457);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     DK(KP866025403, +0.866025403784438646763723170752936183471402627);     int i;     for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 16) {	  E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu;	  E T1w, TW, T1k, T11, T1l;	  {	       E T6, TO, Tb, TP;	       T1 = ri[0];	       T1B = ii[0];	       {		    E T3, T5, T2, T4;		    T3 = ri[WS(ios, 3)];		    T5 = ii[WS(ios, 3)];		    T2 = W[4];		    T4 = W[5];		    T6 = FMA(T2, T3, T4 * T5);		    TO = FNMS(T4, T3, T2 * T5);	       }	       {		    E T8, Ta, T7, T9;		    T8 = ri[WS(ios, 6)];		    Ta = ii[WS(ios, 6)];		    T7 = W[10];		    T9 = W[11];		    Tb = FMA(T7, T8, T9 * Ta);		    TP = FNMS(T9, T8, T7 * Ta);	       }	       TQ = KP866025403 * (TO - TP);	       T1G = KP866025403 * (Tb - T6);	       Tc = T6 + Tb;	       TN = FNMS(KP500000000, Tc, T1);	       T1A = TO + TP;	       T1H = FNMS(KP500000000, T1A, T1B);	  }	  {	       E Tz, T19, TE, T14, TJ, T15, TK, T1a;	       {		    E Tw, Ty, Tv, Tx;		    Tw = ri[WS(ios, 2)];		    Ty = ii[WS(ios, 2)];		    Tv = W[2];		    Tx = W[3];		    Tz = FMA(Tv, Tw, Tx * Ty);		    T19 = FNMS(Tx, Tw, Tv * Ty);	       }	       {		    E TB, TD, TA, TC;		    TB = ri[WS(ios, 5)];		    TD = ii[WS(ios, 5)];		    TA = W[8];		    TC = W[9];		    TE = FMA(TA, TB, TC * TD);		    T14 = FNMS(TC, TB, TA * TD);	       }	       {		    E TG, TI, TF, TH;		    TG = ri[WS(ios, 8)];		    TI = ii[WS(ios, 8)];		    TF = W[14];		    TH = W[15];		    TJ = FMA(TF, TG, TH * TI);		    T15 = FNMS(TH, TG, TF * TI);	       }	       TK = TE + TJ;	       T1a = T14 + T15;	       TL = Tz + TK;	       T1x = T19 + T1a;	       {		    E T13, T16, T18, T1b;		    T13 = FNMS(KP500000000, TK, Tz);		    T16 = KP866025403 * (T14 - T15);		    T17 = T13 + T16;		    T1o = T13 - T16;		    T18 = KP866025403 * (TJ - TE);		    T1b = FNMS(KP500000000, T1a, T19);		    T1c = T18 + T1b;		    T1n = T1b - T18;	       }	  }	  {	       E Ti, TY, Tn, TT, Ts, TU, Tt, TZ;	       {		    E Tf, Th, Te, Tg;		    Tf = ri[WS(ios, 1)];		    Th = ii[WS(ios, 1)];		    Te = W[0];		    Tg = W[1];		    Ti = FMA(Te, Tf, Tg * Th);		    TY = FNMS(Tg, Tf, Te * Th);	       }	       {		    E Tk, Tm, Tj, Tl;		    Tk = ri[WS(ios, 4)];		    Tm = ii[WS(ios, 4)];		    Tj = W[6];		    Tl = W[7];		    Tn = FMA(Tj, Tk, Tl * Tm);		    TT = FNMS(Tl, Tk, Tj * Tm);	       }	       {		    E Tp, Tr, To, Tq;		    Tp = ri[WS(ios, 7)];		    Tr = ii[WS(ios, 7)];		    To = W[12];		    Tq = W[13];		    Ts = FMA(To, Tp, Tq * Tr);		    TU = FNMS(Tq, Tp, To * Tr);	       }	       Tt = Tn + Ts;	       TZ = TT + TU;	       Tu = Ti + Tt;	       T1w = TY + TZ;	       {		    E TS, TV, TX, T10;		    TS = FNMS(KP500000000, Tt, Ti);		    TV = KP866025403 * (TT - TU);		    TW = TS + TV;		    T1k = TS - TV;		    TX = KP866025403 * (Ts - Tn);		    T10 = FNMS(KP500000000, TZ, TY);		    T11 = TX + T10;		    T1l = T10 - TX;	       }	  }	  {	       E T1y, Td, TM, T1v;	       T1y = KP866025403 * (T1w - T1x);	       Td = T1 + Tc;	       TM = Tu + TL;	       T1v = FNMS(KP500000000, TM, Td);	       ri[0] = Td + TM;	       ri[WS(ios, 3)] = T1v + T1y;	       ri[WS(ios, 6)] = T1v - T1y;	  }	  {	       E T1D, T1z, T1C, T1E;	       T1D = KP866025403 * (TL - Tu);	       T1z = T1w + T1x;	       T1C = T1A + T1B;	       T1E = FNMS(KP500000000, T1z, T1C);	       ii[0] = T1z + T1C;	       ii[WS(ios, 6)] = T1E - T1D;	       ii[WS(ios, 3)] = T1D + T1E;	  }	  {	       E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K;	       TR = TN + TQ;	       T1I = T1G + T1H;	       {		    E T12, T1d, T1g, T1h;		    T12 = FMA(KP766044443, TW, KP642787609 * T11);		    T1d = FMA(KP173648177, T17, KP984807753 * T1c);		    T1e = T12 + T1d;		    T1J = KP866025403 * (T1d - T12);		    T1g = FNMS(KP642787609, TW, KP766044443 * T11);		    T1h = FNMS(KP984807753, T17, KP173648177 * T1c);		    T1i = KP866025403 * (T1g - T1h);		    T1F = T1g + T1h;	       }	       ri[WS(ios, 1)] = TR + T1e;	       ii[WS(ios, 1)] = T1F + T1I;	       T1f = FNMS(KP500000000, T1e, TR);	       ri[WS(ios, 7)] = T1f - T1i;	       ri[WS(ios, 4)] = T1f + T1i;	       T1K = FNMS(KP500000000, T1F, T1I);	       ii[WS(ios, 4)] = T1J + T1K;	       ii[WS(ios, 7)] = T1K - T1J;	  }	  {	       E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O;	       T1j = TN - TQ;	       T1M = T1H - T1G;	       {		    E T1m, T1p, T1s, T1t;		    T1m = FMA(KP173648177, T1k, KP984807753 * T1l);		    T1p = FNMS(KP939692620, T1o, KP342020143 * T1n);		    T1q = T1m + T1p;		    T1N = KP866025403 * (T1p - T1m);		    T1s = FNMS(KP984807753, T1k, KP173648177 * T1l);		    T1t = FMA(KP342020143, T1o, KP939692620 * T1n);		    T1u = KP866025403 * (T1s + T1t);		    T1L = T1s - T1t;	       }	       ri[WS(ios, 2)] = T1j + T1q;	       ii[WS(ios, 2)] = T1L + T1M;	       T1r = FNMS(KP500000000, T1q, T1j);	       ri[WS(ios, 8)] = T1r - T1u;	       ri[WS(ios, 5)] = T1r + T1u;	       T1O = FNMS(KP500000000, T1L, T1M);	       ii[WS(ios, 5)] = T1N + T1O;	       ii[WS(ios, 8)] = T1O - T1N;	  }     }     return W;}static const tw_instr twinstr[] = {     {TW_FULL, 0, 9},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 9, "t1_9", twinstr, {60, 36, 36, 0}, &GENUS, 0, 0, 0 };void X(codelet_t1_9) (planner *p) {     X(kdft_dit_register) (p, t1_9, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -