⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 n1_14.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:29:34 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw -compact -variables 4 -n 14 -name n1_14 -include n.h *//* * This function contains 148 FP additions, 72 FP multiplications, * (or, 100 additions, 24 multiplications, 48 fused multiply/add), * 43 stack variables, and 56 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_notw.ml,v 1.22 2003/04/17 11:07:19 athena Exp $ */#include "n.h"static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, int v, int ivs, int ovs){     DK(KP222520933, +0.222520933956314404288902564496794759466355569);     DK(KP900968867, +0.900968867902419126236102319507445051165919162);     DK(KP623489801, +0.623489801858733530525004884004239810632274731);     DK(KP433883739, +0.433883739117558120475768332848358754609990728);     DK(KP781831482, +0.781831482468029808708444526674057750232334519);     DK(KP974927912, +0.974927912181823607018131682993931217232785801);     int i;     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs) {	  E T3, Tp, T16, T1f, Ta, T1q, Ts, T10, TG, T1z, T19, T1i, Th, T1s, Tv;	  E T12, TU, T1B, T17, T1o, To, T1r, Ty, T11, TN, T1A, T18, T1l;	  {	       E T1, T2, T14, T15;	       T1 = ri[0];	       T2 = ri[WS(is, 7)];	       T3 = T1 - T2;	       Tp = T1 + T2;	       T14 = ii[0];	       T15 = ii[WS(is, 7)];	       T16 = T14 - T15;	       T1f = T14 + T15;	  }	  {	       E T6, Tq, T9, Tr;	       {		    E T4, T5, T7, T8;		    T4 = ri[WS(is, 2)];		    T5 = ri[WS(is, 9)];		    T6 = T4 - T5;		    Tq = T4 + T5;		    T7 = ri[WS(is, 12)];		    T8 = ri[WS(is, 5)];		    T9 = T7 - T8;		    Tr = T7 + T8;	       }	       Ta = T6 + T9;	       T1q = Tr - Tq;	       Ts = Tq + Tr;	       T10 = T9 - T6;	  }	  {	       E TC, T1g, TF, T1h;	       {		    E TA, TB, TD, TE;		    TA = ii[WS(is, 2)];		    TB = ii[WS(is, 9)];		    TC = TA - TB;		    T1g = TA + TB;		    TD = ii[WS(is, 12)];		    TE = ii[WS(is, 5)];		    TF = TD - TE;		    T1h = TD + TE;	       }	       TG = TC - TF;	       T1z = T1g - T1h;	       T19 = TC + TF;	       T1i = T1g + T1h;	  }	  {	       E Td, Tt, Tg, Tu;	       {		    E Tb, Tc, Te, Tf;		    Tb = ri[WS(is, 4)];		    Tc = ri[WS(is, 11)];		    Td = Tb - Tc;		    Tt = Tb + Tc;		    Te = ri[WS(is, 10)];		    Tf = ri[WS(is, 3)];		    Tg = Te - Tf;		    Tu = Te + Tf;	       }	       Th = Td + Tg;	       T1s = Tt - Tu;	       Tv = Tt + Tu;	       T12 = Tg - Td;	  }	  {	       E TQ, T1m, TT, T1n;	       {		    E TO, TP, TR, TS;		    TO = ii[WS(is, 4)];		    TP = ii[WS(is, 11)];		    TQ = TO - TP;		    T1m = TO + TP;		    TR = ii[WS(is, 10)];		    TS = ii[WS(is, 3)];		    TT = TR - TS;		    T1n = TR + TS;	       }	       TU = TQ - TT;	       T1B = T1n - T1m;	       T17 = TQ + TT;	       T1o = T1m + T1n;	  }	  {	       E Tk, Tw, Tn, Tx;	       {		    E Ti, Tj, Tl, Tm;		    Ti = ri[WS(is, 6)];		    Tj = ri[WS(is, 13)];		    Tk = Ti - Tj;		    Tw = Ti + Tj;		    Tl = ri[WS(is, 8)];		    Tm = ri[WS(is, 1)];		    Tn = Tl - Tm;		    Tx = Tl + Tm;	       }	       To = Tk + Tn;	       T1r = Tw - Tx;	       Ty = Tw + Tx;	       T11 = Tn - Tk;	  }	  {	       E TJ, T1j, TM, T1k;	       {		    E TH, TI, TK, TL;		    TH = ii[WS(is, 6)];		    TI = ii[WS(is, 13)];		    TJ = TH - TI;		    T1j = TH + TI;		    TK = ii[WS(is, 8)];		    TL = ii[WS(is, 1)];		    TM = TK - TL;		    T1k = TK + TL;	       }	       TN = TJ - TM;	       T1A = T1k - T1j;	       T18 = TJ + TM;	       T1l = T1j + T1k;	  }	  ro[WS(os, 7)] = T3 + Ta + Th + To;	  io[WS(os, 7)] = T16 + T19 + T17 + T18;	  ro[0] = Tp + Ts + Tv + Ty;	  io[0] = T1f + T1i + T1o + T1l;	  {	       E TV, Tz, T1e, T1d;	       TV = FNMS(KP781831482, TN, KP974927912 * TG) - (KP433883739 * TU);	       Tz = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta);	       ro[WS(os, 5)] = Tz - TV;	       ro[WS(os, 9)] = Tz + TV;	       T1e = FNMS(KP781831482, T11, KP974927912 * T10) - (KP433883739 * T12);	       T1d = FMA(KP623489801, T18, T16) + FNMA(KP900968867, T17, KP222520933 * T19);	       io[WS(os, 5)] = T1d - T1e;	       io[WS(os, 9)] = T1e + T1d;	  }	  {	       E TX, TW, T1b, T1c;	       TX = FMA(KP781831482, TG, KP974927912 * TU) + (KP433883739 * TN);	       TW = FMA(KP623489801, Ta, T3) + FNMA(KP900968867, To, KP222520933 * Th);	       ro[WS(os, 13)] = TW - TX;	       ro[WS(os, 1)] = TW + TX;	       T1b = FMA(KP781831482, T10, KP974927912 * T12) + (KP433883739 * T11);	       T1c = FMA(KP623489801, T19, T16) + FNMA(KP900968867, T18, KP222520933 * T17);	       io[WS(os, 1)] = T1b + T1c;	       io[WS(os, 13)] = T1c - T1b;	  }	  {	       E TZ, TY, T13, T1a;	       TZ = FMA(KP433883739, TG, KP974927912 * TN) - (KP781831482 * TU);	       TY = FMA(KP623489801, Th, T3) + FNMA(KP222520933, To, KP900968867 * Ta);	       ro[WS(os, 11)] = TY - TZ;	       ro[WS(os, 3)] = TY + TZ;	       T13 = FMA(KP433883739, T10, KP974927912 * T11) - (KP781831482 * T12);	       T1a = FMA(KP623489801, T17, T16) + FNMA(KP222520933, T18, KP900968867 * T19);	       io[WS(os, 3)] = T13 + T1a;	       io[WS(os, 11)] = T1a - T13;	  }	  {	       E T1t, T1p, T1C, T1y;	       T1t = FNMS(KP433883739, T1r, KP781831482 * T1q) - (KP974927912 * T1s);	       T1p = FMA(KP623489801, T1i, T1f) + FNMA(KP900968867, T1l, KP222520933 * T1o);	       io[WS(os, 6)] = T1p - T1t;	       io[WS(os, 8)] = T1t + T1p;	       T1C = FNMS(KP433883739, T1A, KP781831482 * T1z) - (KP974927912 * T1B);	       T1y = FMA(KP623489801, Ts, Tp) + FNMA(KP900968867, Ty, KP222520933 * Tv);	       ro[WS(os, 6)] = T1y - T1C;	       ro[WS(os, 8)] = T1y + T1C;	  }	  {	       E T1v, T1u, T1E, T1D;	       T1v = FMA(KP433883739, T1q, KP781831482 * T1s) - (KP974927912 * T1r);	       T1u = FMA(KP623489801, T1o, T1f) + FNMA(KP222520933, T1l, KP900968867 * T1i);	       io[WS(os, 4)] = T1u - T1v;	       io[WS(os, 10)] = T1v + T1u;	       T1E = FMA(KP433883739, T1z, KP781831482 * T1B) - (KP974927912 * T1A);	       T1D = FMA(KP623489801, Tv, Tp) + FNMA(KP222520933, Ty, KP900968867 * Ts);	       ro[WS(os, 4)] = T1D - T1E;	       ro[WS(os, 10)] = T1D + T1E;	  }	  {	       E T1w, T1x, T1G, T1F;	       T1w = FMA(KP974927912, T1q, KP433883739 * T1s) + (KP781831482 * T1r);	       T1x = FMA(KP623489801, T1l, T1f) + FNMA(KP900968867, T1o, KP222520933 * T1i);	       io[WS(os, 2)] = T1w + T1x;	       io[WS(os, 12)] = T1x - T1w;	       T1G = FMA(KP974927912, T1z, KP433883739 * T1B) + (KP781831482 * T1A);	       T1F = FMA(KP623489801, Ty, Tp) + FNMA(KP900968867, Tv, KP222520933 * Ts);	       ro[WS(os, 12)] = T1F - T1G;	       ro[WS(os, 2)] = T1F + T1G;	  }     }}static const kdft_desc desc = { 14, "n1_14", {100, 24, 48, 0}, &GENUS, 0, 0, 0, 0 };void X(codelet_n1_14) (planner *p) {     X(kdft_register) (p, n1_14, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -