⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_15.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:30:07 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 15 -name t1_15 -include t.h *//* * This function contains 184 FP additions, 112 FP multiplications, * (or, 128 additions, 56 multiplications, 56 fused multiply/add), * 65 stack variables, and 60 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twiddle.ml,v 1.16 2003/04/16 19:51:27 athena Exp $ */#include "t.h"static const R *t1_15(R *ri, R *ii, const R *W, stride ios, int m, int dist){     DK(KP587785252, +0.587785252292473129168705954639072768597652438);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     DK(KP866025403, +0.866025403784438646763723170752936183471402627);     int i;     for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 28) {	  E T1q, T34, Td, T1n, T2S, T35, T13, T1k, T1l, T2E, T2F, T2O, T1H, T1T, T2k;	  E T2t, T2f, T2s, T1M, T1U, Tu, TL, TM, T2H, T2I, T2N, T1w, T1Q, T29, T2w;	  E T24, T2v, T1B, T1R;	  {	       E T1, T2R, T6, T1o, Tb, T1p, Tc, T2Q;	       T1 = ri[0];	       T2R = ii[0];	       {		    E T3, T5, T2, T4;		    T3 = ri[WS(ios, 5)];		    T5 = ii[WS(ios, 5)];		    T2 = W[8];		    T4 = W[9];		    T6 = FMA(T2, T3, T4 * T5);		    T1o = FNMS(T4, T3, T2 * T5);	       }	       {		    E T8, Ta, T7, T9;		    T8 = ri[WS(ios, 10)];		    Ta = ii[WS(ios, 10)];		    T7 = W[18];		    T9 = W[19];		    Tb = FMA(T7, T8, T9 * Ta);		    T1p = FNMS(T9, T8, T7 * Ta);	       }	       T1q = KP866025403 * (T1o - T1p);	       T34 = KP866025403 * (Tb - T6);	       Tc = T6 + Tb;	       Td = T1 + Tc;	       T1n = FNMS(KP500000000, Tc, T1);	       T2Q = T1o + T1p;	       T2S = T2Q + T2R;	       T35 = FNMS(KP500000000, T2Q, T2R);	  }	  {	       E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j;	       E T2i;	       {		    E TO, TQ, TN, TP;		    TO = ri[WS(ios, 6)];		    TQ = ii[WS(ios, 6)];		    TN = W[10];		    TP = W[11];		    TR = FMA(TN, TO, TP * TQ);		    T2c = FNMS(TP, TO, TN * TQ);	       }	       {		    E T15, T17, T14, T16;		    T15 = ri[WS(ios, 9)];		    T17 = ii[WS(ios, 9)];		    T14 = W[16];		    T16 = W[17];		    T18 = FMA(T14, T15, T16 * T17);		    T2h = FNMS(T16, T15, T14 * T17);	       }	       {		    E TT, TV, TS, TU;		    TT = ri[WS(ios, 11)];		    TV = ii[WS(ios, 11)];		    TS = W[20];		    TU = W[21];		    TW = FMA(TS, TT, TU * TV);		    T1E = FNMS(TU, TT, TS * TV);	       }	       {		    E TY, T10, TX, TZ;		    TY = ri[WS(ios, 1)];		    T10 = ii[WS(ios, 1)];		    TX = W[0];		    TZ = W[1];		    T11 = FMA(TX, TY, TZ * T10);		    T1F = FNMS(TZ, TY, TX * T10);	       }	       T12 = TW + T11;	       T2d = T1E + T1F;	       {		    E T1a, T1c, T19, T1b;		    T1a = ri[WS(ios, 14)];		    T1c = ii[WS(ios, 14)];		    T19 = W[26];		    T1b = W[27];		    T1d = FMA(T19, T1a, T1b * T1c);		    T1J = FNMS(T1b, T1a, T19 * T1c);	       }	       {		    E T1f, T1h, T1e, T1g;		    T1f = ri[WS(ios, 4)];		    T1h = ii[WS(ios, 4)];		    T1e = W[6];		    T1g = W[7];		    T1i = FMA(T1e, T1f, T1g * T1h);		    T1K = FNMS(T1g, T1f, T1e * T1h);	       }	       T1j = T1d + T1i;	       T2i = T1J + T1K;	       {		    E T1D, T1G, T2g, T2j;		    T13 = TR + T12;		    T1k = T18 + T1j;		    T1l = T13 + T1k;		    T2E = T2c + T2d;		    T2F = T2h + T2i;		    T2O = T2E + T2F;		    T1D = FNMS(KP500000000, T12, TR);		    T1G = KP866025403 * (T1E - T1F);		    T1H = T1D - T1G;		    T1T = T1D + T1G;		    T2g = KP866025403 * (T1i - T1d);		    T2j = FNMS(KP500000000, T2i, T2h);		    T2k = T2g + T2j;		    T2t = T2j - T2g;		    {			 E T2b, T2e, T1I, T1L;			 T2b = KP866025403 * (T11 - TW);			 T2e = FNMS(KP500000000, T2d, T2c);			 T2f = T2b + T2e;			 T2s = T2e - T2b;			 T1I = FNMS(KP500000000, T1j, T18);			 T1L = KP866025403 * (T1J - T1K);			 T1M = T1I - T1L;			 T1U = T1I + T1L;		    }	       }	  }	  {	       E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK;	       E T27;	       {		    E Tf, Th, Te, Tg;		    Tf = ri[WS(ios, 3)];		    Th = ii[WS(ios, 3)];		    Te = W[4];		    Tg = W[5];		    Ti = FMA(Te, Tf, Tg * Th);		    T21 = FNMS(Tg, Tf, Te * Th);	       }	       {		    E Tw, Ty, Tv, Tx;		    Tw = ri[WS(ios, 12)];		    Ty = ii[WS(ios, 12)];		    Tv = W[22];		    Tx = W[23];		    Tz = FMA(Tv, Tw, Tx * Ty);		    T26 = FNMS(Tx, Tw, Tv * Ty);	       }	       {		    E Tk, Tm, Tj, Tl;		    Tk = ri[WS(ios, 8)];		    Tm = ii[WS(ios, 8)];		    Tj = W[14];		    Tl = W[15];		    Tn = FMA(Tj, Tk, Tl * Tm);		    T1t = FNMS(Tl, Tk, Tj * Tm);	       }	       {		    E Tp, Tr, To, Tq;		    Tp = ri[WS(ios, 13)];		    Tr = ii[WS(ios, 13)];		    To = W[24];		    Tq = W[25];		    Ts = FMA(To, Tp, Tq * Tr);		    T1u = FNMS(Tq, Tp, To * Tr);	       }	       Tt = Tn + Ts;	       T22 = T1t + T1u;	       {		    E TB, TD, TA, TC;		    TB = ri[WS(ios, 2)];		    TD = ii[WS(ios, 2)];		    TA = W[2];		    TC = W[3];		    TE = FMA(TA, TB, TC * TD);		    T1y = FNMS(TC, TB, TA * TD);	       }	       {		    E TG, TI, TF, TH;		    TG = ri[WS(ios, 7)];		    TI = ii[WS(ios, 7)];		    TF = W[12];		    TH = W[13];		    TJ = FMA(TF, TG, TH * TI);		    T1z = FNMS(TH, TG, TF * TI);	       }	       TK = TE + TJ;	       T27 = T1y + T1z;	       {		    E T1s, T1v, T25, T28;		    Tu = Ti + Tt;		    TL = Tz + TK;		    TM = Tu + TL;		    T2H = T21 + T22;		    T2I = T26 + T27;		    T2N = T2H + T2I;		    T1s = FNMS(KP500000000, Tt, Ti);		    T1v = KP866025403 * (T1t - T1u);		    T1w = T1s - T1v;		    T1Q = T1s + T1v;		    T25 = KP866025403 * (TJ - TE);		    T28 = FNMS(KP500000000, T27, T26);		    T29 = T25 + T28;		    T2w = T28 - T25;		    {			 E T20, T23, T1x, T1A;			 T20 = KP866025403 * (Ts - Tn);			 T23 = FNMS(KP500000000, T22, T21);			 T24 = T20 + T23;			 T2v = T23 - T20;			 T1x = FNMS(KP500000000, TK, Tz);			 T1A = KP866025403 * (T1y - T1z);			 T1B = T1x - T1A;			 T1R = T1x + T1A;		    }	       }	  }	  {	       E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D;	       T2C = KP559016994 * (TM - T1l);	       T1m = TM + T1l;	       T2B = FNMS(KP250000000, T1m, Td);	       T2G = T2E - T2F;	       T2J = T2H - T2I;	       T2K = FNMS(KP587785252, T2J, KP951056516 * T2G);	       T2M = FMA(KP951056516, T2J, KP587785252 * T2G);	       ri[0] = Td + T1m;	       T2L = T2C + T2B;	       ri[WS(ios, 9)] = T2L - T2M;	       ri[WS(ios, 6)] = T2L + T2M;	       T2D = T2B - T2C;	       ri[WS(ios, 12)] = T2D - T2K;	       ri[WS(ios, 3)] = T2D + T2K;	  }	  {	       E T2U, T2P, T2T, T2Y, T30, T2W, T2X, T2Z, T2V;	       T2U = KP559016994 * (T2N - T2O);	       T2P = T2N + T2O;	       T2T = FNMS(KP250000000, T2P, T2S);	       T2W = T13 - T1k;	       T2X = Tu - TL;	       T2Y = FNMS(KP587785252, T2X, KP951056516 * T2W);	       T30 = FMA(KP951056516, T2X, KP587785252 * T2W);	       ii[0] = T2P + T2S;	       T2Z = T2U + T2T;	       ii[WS(ios, 6)] = T2Z - T30;	       ii[WS(ios, 9)] = T30 + T2Z;	       T2V = T2T - T2U;	       ii[WS(ios, 3)] = T2V - T2Y;	       ii[WS(ios, 12)] = T2Y + T2V;	  }	  {	       E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r;	       {		    E T2u, T2x, T1C, T1N;		    T2u = T2s - T2t;		    T2x = T2v - T2w;		    T2y = FNMS(KP587785252, T2x, KP951056516 * T2u);		    T2A = FMA(KP951056516, T2x, KP587785252 * T2u);		    T1r = T1n - T1q;		    T1C = T1w + T1B;		    T1N = T1H + T1M;		    T1O = T1C + T1N;		    T2p = FNMS(KP250000000, T1O, T1r);		    T2q = KP559016994 * (T1C - T1N);	       }	       ri[WS(ios, 5)] = T1r + T1O;	       T2z = T2q + T2p;	       ri[WS(ios, 14)] = T2z - T2A;	       ri[WS(ios, 11)] = T2z + T2A;	       T2r = T2p - T2q;	       ri[WS(ios, 2)] = T2r - T2y;	       ri[WS(ios, 8)] = T2r + T2y;	  }	  {	       E T3h, T3q, T3i, T3l, T3m, T3n, T3p, T3o;	       {		    E T3f, T3g, T3j, T3k;		    T3f = T1H - T1M;		    T3g = T1w - T1B;		    T3h = FNMS(KP587785252, T3g, KP951056516 * T3f);		    T3q = FMA(KP951056516, T3g, KP587785252 * T3f);		    T3i = T35 - T34;		    T3j = T2v + T2w;		    T3k = T2s + T2t;		    T3l = T3j + T3k;		    T3m = FNMS(KP250000000, T3l, T3i);		    T3n = KP559016994 * (T3j - T3k);	       }	       ii[WS(ios, 5)] = T3l + T3i;	       T3p = T3n + T3m;	       ii[WS(ios, 11)] = T3p - T3q;	       ii[WS(ios, 14)] = T3q + T3p;	       T3o = T3m - T3n;	       ii[WS(ios, 2)] = T3h + T3o;	       ii[WS(ios, 8)] = T3o - T3h;	  }	  {	       E T3c, T3d, T36, T37, T33, T38, T3e, T39;	       {		    E T3a, T3b, T31, T32;		    T3a = T1Q - T1R;		    T3b = T1T - T1U;		    T3c = FMA(KP951056516, T3a, KP587785252 * T3b);		    T3d = FNMS(KP587785252, T3a, KP951056516 * T3b);		    T36 = T34 + T35;		    T31 = T24 + T29;		    T32 = T2f + T2k;		    T37 = T31 + T32;		    T33 = KP559016994 * (T31 - T32);		    T38 = FNMS(KP250000000, T37, T36);	       }	       ii[WS(ios, 10)] = T37 + T36;	       T3e = T38 - T33;	       ii[WS(ios, 7)] = T3d + T3e;	       ii[WS(ios, 13)] = T3e - T3d;	       T39 = T33 + T38;	       ii[WS(ios, 1)] = T39 - T3c;	       ii[WS(ios, 4)] = T3c + T39;	  }	  {	       E T2m, T2o, T1P, T1W, T1X, T1Y, T2n, T1Z;	       {		    E T2a, T2l, T1S, T1V;		    T2a = T24 - T29;		    T2l = T2f - T2k;		    T2m = FMA(KP951056516, T2a, KP587785252 * T2l);		    T2o = FNMS(KP587785252, T2a, KP951056516 * T2l);		    T1P = T1n + T1q;		    T1S = T1Q + T1R;		    T1V = T1T + T1U;		    T1W = T1S + T1V;		    T1X = KP559016994 * (T1S - T1V);		    T1Y = FNMS(KP250000000, T1W, T1P);	       }	       ri[WS(ios, 10)] = T1P + T1W;	       T2n = T1Y - T1X;	       ri[WS(ios, 7)] = T2n - T2o;	       ri[WS(ios, 13)] = T2n + T2o;	       T1Z = T1X + T1Y;	       ri[WS(ios, 4)] = T1Z - T2m;	       ri[WS(ios, 1)] = T1Z + T2m;	  }     }     return W;}static const tw_instr twinstr[] = {     {TW_FULL, 0, 15},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 15, "t1_15", twinstr, {128, 56, 56, 0}, &GENUS, 0, 0, 0 };void X(codelet_t1_15) (planner *p) {     X(kdft_dit_register) (p, t1_15, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -