📄 m1_32.c
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul 5 21:29:38 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw_noinline -compact -variables 4 -n 32 -name m1_32 -include n.h *//* * This function contains 372 FP additions, 84 FP multiplications, * (or, 340 additions, 52 multiplications, 32 fused multiply/add), * 99 stack variables, and 128 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_notw_noinline.ml,v 1.1 2003/04/17 11:07:19 athena Exp $ */#include "n.h"static void m1_32_0(const R *ri, const R *ii, R *ro, R *io, stride is, stride os){ DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP707106781, +0.707106781186547524400844362104849039284835938); { E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G; E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W; E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E; E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D; E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I; { E T3, T1x, T14, T2S, T6, T2R, T17, T1y; { E T1, T2, T12, T13; T1 = ri[0]; T2 = ri[WS(is, 16)]; T3 = T1 + T2; T1x = T1 - T2; T12 = ii[0]; T13 = ii[WS(is, 16)]; T14 = T12 + T13; T2S = T12 - T13; } { E T4, T5, T15, T16; T4 = ri[WS(is, 8)]; T5 = ri[WS(is, 24)]; T6 = T4 + T5; T2R = T4 - T5; T15 = ii[WS(is, 8)]; T16 = ii[WS(is, 24)]; T17 = T15 + T16; T1y = T15 - T16; } T7 = T3 + T6; T4r = T3 - T6; T4Z = T14 - T17; T18 = T14 + T17; T1z = T1x - T1y; T3t = T1x + T1y; T3T = T2S - T2R; T2T = T2R + T2S; } { E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E; { E T8, T9, T19, T1a; T8 = ri[WS(is, 4)]; T9 = ri[WS(is, 20)]; Ta = T8 + T9; T1B = T8 - T9; T19 = ii[WS(is, 4)]; T1a = ii[WS(is, 20)]; T1b = T19 + T1a; T1A = T19 - T1a; } { E Tb, Tc, T1c, T1d; Tb = ri[WS(is, 28)]; Tc = ri[WS(is, 12)]; Td = Tb + Tc; T1D = Tb - Tc; T1c = ii[WS(is, 28)]; T1d = ii[WS(is, 12)]; T1e = T1c + T1d; T1E = T1c - T1d; } Te = Ta + Td; T1f = T1b + T1e; T50 = Td - Ta; T4s = T1b - T1e; { E T2U, T2V, T1C, T1F; T2U = T1D - T1E; T2V = T1B + T1A; T2W = KP707106781 * (T2U - T2V); T3u = KP707106781 * (T2V + T2U); T1C = T1A - T1B; T1F = T1D + T1E; T1G = KP707106781 * (T1C - T1F); T3U = KP707106781 * (T1C + T1F); } } { E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N; { E Tg, Th, T1h, T1i; Tg = ri[WS(is, 2)]; Th = ri[WS(is, 18)]; Ti = Tg + Th; T1L = Tg - Th; T1h = ii[WS(is, 2)]; T1i = ii[WS(is, 18)]; T1j = T1h + T1i; T1J = T1h - T1i; } { E Tj, Tk, T1k, T1l; Tj = ri[WS(is, 10)]; Tk = ri[WS(is, 26)]; Tl = Tj + Tk; T1I = Tj - Tk; T1k = ii[WS(is, 10)]; T1l = ii[WS(is, 26)]; T1m = T1k + T1l; T1M = T1k - T1l; } Tm = Ti + Tl; T1n = T1j + T1m; T1K = T1I + T1J; T1N = T1L - T1M; T1O = FNMS(KP923879532, T1N, KP382683432 * T1K); T2Z = FMA(KP923879532, T1K, KP382683432 * T1N); { E T3w, T3x, T4u, T4v; T3w = T1J - T1I; T3x = T1L + T1M; T3y = FNMS(KP382683432, T3x, KP923879532 * T3w); T3X = FMA(KP382683432, T3w, KP923879532 * T3x); T4u = T1j - T1m; T4v = Ti - Tl; T4w = T4u - T4v; T53 = T4v + T4u; } } { E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U; { E Tn, To, T1o, T1p; Tn = ri[WS(is, 30)]; To = ri[WS(is, 14)]; Tp = Tn + To; T1S = Tn - To; T1o = ii[WS(is, 30)]; T1p = ii[WS(is, 14)]; T1q = T1o + T1p; T1Q = T1o - T1p; } { E Tq, Tr, T1r, T1s; Tq = ri[WS(is, 6)]; Tr = ri[WS(is, 22)]; Ts = Tq + Tr; T1P = Tq - Tr; T1r = ii[WS(is, 6)]; T1s = ii[WS(is, 22)]; T1t = T1r + T1s; T1T = T1r - T1s; } Tt = Tp + Ts; T1u = T1q + T1t; T1R = T1P + T1Q; T1U = T1S - T1T; T1V = FMA(KP382683432, T1R, KP923879532 * T1U); T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U); { E T3z, T3A, T4x, T4y; T3z = T1Q - T1P; T3A = T1S + T1T; T3B = FMA(KP923879532, T3z, KP382683432 * T3A); T3W = FNMS(KP382683432, T3z, KP923879532 * T3A); T4x = Tp - Ts; T4y = T1q - T1t; T4z = T4x + T4y; T52 = T4x - T4y; } } { E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C; E T4P; { E TL, TM, T2H, T2I; TL = ri[WS(is, 31)]; TM = ri[WS(is, 15)]; TN = TL + TM; T2p = TL - TM; T2H = ii[WS(is, 31)]; T2I = ii[WS(is, 15)]; T2J = T2H - T2I; T4S = T2H + T2I; } { E TO, TP, T2q, T2r; TO = ri[WS(is, 7)]; TP = ri[WS(is, 23)]; TQ = TO + TP; T2G = TO - TP; T2q = ii[WS(is, 7)]; T2r = ii[WS(is, 23)]; T2s = T2q - T2r; T4T = T2q + T2r; } { E TS, TT, T2u, T2v; TS = ri[WS(is, 3)]; TT = ri[WS(is, 19)]; TU = TS + TT; T2x = TS - TT; T2u = ii[WS(is, 3)]; T2v = ii[WS(is, 19)]; T2w = T2u - T2v; T4O = T2u + T2v; } { E TV, TW, T2A, T2B; TV = ri[WS(is, 27)]; TW = ri[WS(is, 11)]; TX = TV + TW; T2z = TV - TW; T2A = ii[WS(is, 27)]; T2B = ii[WS(is, 11)]; T2C = T2A - T2B; T4P = T2A + T2B; } T2t = T2p - T2s; T3L = T2p + T2s; T3O = T2J - T2G; T2K = T2G + T2J; TR = TN + TQ; TY = TU + TX; T5F = TR - TY; { E T4N, T4Q, T2y, T2D; T5G = T4S + T4T; T5H = T4O + T4P; T5I = T5G - T5H; T4N = TN - TQ; T4Q = T4O - T4P; T4R = T4N - T4Q; T5j = T4N + T4Q; T2y = T2w - T2x; T2D = T2z + T2C; T2E = KP707106781 * (T2y - T2D); T3P = KP707106781 * (T2y + T2D); { E T4U, T4V, T2L, T2M; T4U = T4S - T4T; T4V = TX - TU; T4W = T4U - T4V; T5k = T4V + T4U; T2L = T2z - T2C; T2M = T2x + T2w; T2N = KP707106781 * (T2L - T2M); T3M = KP707106781 * (T2M + T2L); } } } { E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26; E T4J; { E Tw, Tx, T1Z, T20; Tw = ri[WS(is, 1)]; Tx = ri[WS(is, 17)]; Ty = Tw + Tx; T2f = Tw - Tx; T1Z = ii[WS(is, 1)]; T20 = ii[WS(is, 17)]; T21 = T1Z - T20; T4C = T1Z + T20; } { E Tz, TA, T2g, T2h; Tz = ri[WS(is, 9)]; TA = ri[WS(is, 25)]; TB = Tz + TA; T1Y = Tz - TA; T2g = ii[WS(is, 9)]; T2h = ii[WS(is, 25)]; T2i = T2g - T2h; T4D = T2g + T2h; } { E TD, TE, T29, T2a; TD = ri[WS(is, 5)]; TE = ri[WS(is, 21)]; TF = TD + TE; T28 = TD - TE; T29 = ii[WS(is, 5)]; T2a = ii[WS(is, 21)]; T2b = T29 - T2a; T4I = T29 + T2a; } { E TG, TH, T24, T25; TG = ri[WS(is, 29)]; TH = ri[WS(is, 13)]; TI = TG + TH; T23 = TG - TH; T24 = ii[WS(is, 29)]; T25 = ii[WS(is, 13)]; T26 = T24 - T25; T4J = T24 + T25; } T22 = T1Y + T21; T3E = T2f + T2i; T3H = T21 - T1Y;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -