⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 m1_32.c

📁 fftw-3.0.1
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:29:38 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw_noinline -compact -variables 4 -n 32 -name m1_32 -include n.h *//* * This function contains 372 FP additions, 84 FP multiplications, * (or, 340 additions, 52 multiplications, 32 fused multiply/add), * 99 stack variables, and 128 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_notw_noinline.ml,v 1.1 2003/04/17 11:07:19 athena Exp $ */#include "n.h"static void m1_32_0(const R *ri, const R *ii, R *ro, R *io, stride is, stride os){     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP555570233, +0.555570233019602224742830813948532874374937191);     DK(KP195090322, +0.195090322016128267848284868477022240927691618);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     {	  E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;	  E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;	  E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E;	  E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;	  E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I;	  {	       E T3, T1x, T14, T2S, T6, T2R, T17, T1y;	       {		    E T1, T2, T12, T13;		    T1 = ri[0];		    T2 = ri[WS(is, 16)];		    T3 = T1 + T2;		    T1x = T1 - T2;		    T12 = ii[0];		    T13 = ii[WS(is, 16)];		    T14 = T12 + T13;		    T2S = T12 - T13;	       }	       {		    E T4, T5, T15, T16;		    T4 = ri[WS(is, 8)];		    T5 = ri[WS(is, 24)];		    T6 = T4 + T5;		    T2R = T4 - T5;		    T15 = ii[WS(is, 8)];		    T16 = ii[WS(is, 24)];		    T17 = T15 + T16;		    T1y = T15 - T16;	       }	       T7 = T3 + T6;	       T4r = T3 - T6;	       T4Z = T14 - T17;	       T18 = T14 + T17;	       T1z = T1x - T1y;	       T3t = T1x + T1y;	       T3T = T2S - T2R;	       T2T = T2R + T2S;	  }	  {	       E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E;	       {		    E T8, T9, T19, T1a;		    T8 = ri[WS(is, 4)];		    T9 = ri[WS(is, 20)];		    Ta = T8 + T9;		    T1B = T8 - T9;		    T19 = ii[WS(is, 4)];		    T1a = ii[WS(is, 20)];		    T1b = T19 + T1a;		    T1A = T19 - T1a;	       }	       {		    E Tb, Tc, T1c, T1d;		    Tb = ri[WS(is, 28)];		    Tc = ri[WS(is, 12)];		    Td = Tb + Tc;		    T1D = Tb - Tc;		    T1c = ii[WS(is, 28)];		    T1d = ii[WS(is, 12)];		    T1e = T1c + T1d;		    T1E = T1c - T1d;	       }	       Te = Ta + Td;	       T1f = T1b + T1e;	       T50 = Td - Ta;	       T4s = T1b - T1e;	       {		    E T2U, T2V, T1C, T1F;		    T2U = T1D - T1E;		    T2V = T1B + T1A;		    T2W = KP707106781 * (T2U - T2V);		    T3u = KP707106781 * (T2V + T2U);		    T1C = T1A - T1B;		    T1F = T1D + T1E;		    T1G = KP707106781 * (T1C - T1F);		    T3U = KP707106781 * (T1C + T1F);	       }	  }	  {	       E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N;	       {		    E Tg, Th, T1h, T1i;		    Tg = ri[WS(is, 2)];		    Th = ri[WS(is, 18)];		    Ti = Tg + Th;		    T1L = Tg - Th;		    T1h = ii[WS(is, 2)];		    T1i = ii[WS(is, 18)];		    T1j = T1h + T1i;		    T1J = T1h - T1i;	       }	       {		    E Tj, Tk, T1k, T1l;		    Tj = ri[WS(is, 10)];		    Tk = ri[WS(is, 26)];		    Tl = Tj + Tk;		    T1I = Tj - Tk;		    T1k = ii[WS(is, 10)];		    T1l = ii[WS(is, 26)];		    T1m = T1k + T1l;		    T1M = T1k - T1l;	       }	       Tm = Ti + Tl;	       T1n = T1j + T1m;	       T1K = T1I + T1J;	       T1N = T1L - T1M;	       T1O = FNMS(KP923879532, T1N, KP382683432 * T1K);	       T2Z = FMA(KP923879532, T1K, KP382683432 * T1N);	       {		    E T3w, T3x, T4u, T4v;		    T3w = T1J - T1I;		    T3x = T1L + T1M;		    T3y = FNMS(KP382683432, T3x, KP923879532 * T3w);		    T3X = FMA(KP382683432, T3w, KP923879532 * T3x);		    T4u = T1j - T1m;		    T4v = Ti - Tl;		    T4w = T4u - T4v;		    T53 = T4v + T4u;	       }	  }	  {	       E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U;	       {		    E Tn, To, T1o, T1p;		    Tn = ri[WS(is, 30)];		    To = ri[WS(is, 14)];		    Tp = Tn + To;		    T1S = Tn - To;		    T1o = ii[WS(is, 30)];		    T1p = ii[WS(is, 14)];		    T1q = T1o + T1p;		    T1Q = T1o - T1p;	       }	       {		    E Tq, Tr, T1r, T1s;		    Tq = ri[WS(is, 6)];		    Tr = ri[WS(is, 22)];		    Ts = Tq + Tr;		    T1P = Tq - Tr;		    T1r = ii[WS(is, 6)];		    T1s = ii[WS(is, 22)];		    T1t = T1r + T1s;		    T1T = T1r - T1s;	       }	       Tt = Tp + Ts;	       T1u = T1q + T1t;	       T1R = T1P + T1Q;	       T1U = T1S - T1T;	       T1V = FMA(KP382683432, T1R, KP923879532 * T1U);	       T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U);	       {		    E T3z, T3A, T4x, T4y;		    T3z = T1Q - T1P;		    T3A = T1S + T1T;		    T3B = FMA(KP923879532, T3z, KP382683432 * T3A);		    T3W = FNMS(KP382683432, T3z, KP923879532 * T3A);		    T4x = Tp - Ts;		    T4y = T1q - T1t;		    T4z = T4x + T4y;		    T52 = T4x - T4y;	       }	  }	  {	       E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C;	       E T4P;	       {		    E TL, TM, T2H, T2I;		    TL = ri[WS(is, 31)];		    TM = ri[WS(is, 15)];		    TN = TL + TM;		    T2p = TL - TM;		    T2H = ii[WS(is, 31)];		    T2I = ii[WS(is, 15)];		    T2J = T2H - T2I;		    T4S = T2H + T2I;	       }	       {		    E TO, TP, T2q, T2r;		    TO = ri[WS(is, 7)];		    TP = ri[WS(is, 23)];		    TQ = TO + TP;		    T2G = TO - TP;		    T2q = ii[WS(is, 7)];		    T2r = ii[WS(is, 23)];		    T2s = T2q - T2r;		    T4T = T2q + T2r;	       }	       {		    E TS, TT, T2u, T2v;		    TS = ri[WS(is, 3)];		    TT = ri[WS(is, 19)];		    TU = TS + TT;		    T2x = TS - TT;		    T2u = ii[WS(is, 3)];		    T2v = ii[WS(is, 19)];		    T2w = T2u - T2v;		    T4O = T2u + T2v;	       }	       {		    E TV, TW, T2A, T2B;		    TV = ri[WS(is, 27)];		    TW = ri[WS(is, 11)];		    TX = TV + TW;		    T2z = TV - TW;		    T2A = ii[WS(is, 27)];		    T2B = ii[WS(is, 11)];		    T2C = T2A - T2B;		    T4P = T2A + T2B;	       }	       T2t = T2p - T2s;	       T3L = T2p + T2s;	       T3O = T2J - T2G;	       T2K = T2G + T2J;	       TR = TN + TQ;	       TY = TU + TX;	       T5F = TR - TY;	       {		    E T4N, T4Q, T2y, T2D;		    T5G = T4S + T4T;		    T5H = T4O + T4P;		    T5I = T5G - T5H;		    T4N = TN - TQ;		    T4Q = T4O - T4P;		    T4R = T4N - T4Q;		    T5j = T4N + T4Q;		    T2y = T2w - T2x;		    T2D = T2z + T2C;		    T2E = KP707106781 * (T2y - T2D);		    T3P = KP707106781 * (T2y + T2D);		    {			 E T4U, T4V, T2L, T2M;			 T4U = T4S - T4T;			 T4V = TX - TU;			 T4W = T4U - T4V;			 T5k = T4V + T4U;			 T2L = T2z - T2C;			 T2M = T2x + T2w;			 T2N = KP707106781 * (T2L - T2M);			 T3M = KP707106781 * (T2M + T2L);		    }	       }	  }	  {	       E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26;	       E T4J;	       {		    E Tw, Tx, T1Z, T20;		    Tw = ri[WS(is, 1)];		    Tx = ri[WS(is, 17)];		    Ty = Tw + Tx;		    T2f = Tw - Tx;		    T1Z = ii[WS(is, 1)];		    T20 = ii[WS(is, 17)];		    T21 = T1Z - T20;		    T4C = T1Z + T20;	       }	       {		    E Tz, TA, T2g, T2h;		    Tz = ri[WS(is, 9)];		    TA = ri[WS(is, 25)];		    TB = Tz + TA;		    T1Y = Tz - TA;		    T2g = ii[WS(is, 9)];		    T2h = ii[WS(is, 25)];		    T2i = T2g - T2h;		    T4D = T2g + T2h;	       }	       {		    E TD, TE, T29, T2a;		    TD = ri[WS(is, 5)];		    TE = ri[WS(is, 21)];		    TF = TD + TE;		    T28 = TD - TE;		    T29 = ii[WS(is, 5)];		    T2a = ii[WS(is, 21)];		    T2b = T29 - T2a;		    T4I = T29 + T2a;	       }	       {		    E TG, TH, T24, T25;		    TG = ri[WS(is, 29)];		    TH = ri[WS(is, 13)];		    TI = TG + TH;		    T23 = TG - TH;		    T24 = ii[WS(is, 29)];		    T25 = ii[WS(is, 13)];		    T26 = T24 - T25;		    T4J = T24 + T25;	       }	       T22 = T1Y + T21;	       T3E = T2f + T2i;	       T3H = T21 - T1Y;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -