⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 n1_13.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:29:33 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw -compact -variables 4 -n 13 -name n1_13 -include n.h *//* * This function contains 176 FP additions, 68 FP multiplications, * (or, 138 additions, 30 multiplications, 38 fused multiply/add), * 71 stack variables, and 52 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_notw.ml,v 1.22 2003/04/17 11:07:19 athena Exp $ */#include "n.h"static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, int v, int ivs, int ovs){     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);     DK(KP083333333, +0.083333333333333333333333333333333333333333333);     DK(KP251768516, +0.251768516431883313623436926934233488546674281);     DK(KP075902986, +0.075902986037193865983102897245103540356428373);     DK(KP132983124, +0.132983124607418643793760531921092974399165133);     DK(KP258260390, +0.258260390311744861420450644284508567852516811);     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);     DK(KP300238635, +0.300238635966332641462884626667381504676006424);     DK(KP011599105, +0.011599105605768290721655456654083252189827041);     DK(KP156891391, +0.156891391051584611046832726756003269660212636);     DK(KP256247671, +0.256247671582936600958684654061725059144125175);     DK(KP174138601, +0.174138601152135905005660794929264742616964676);     DK(KP575140729, +0.575140729474003121368385547455453388461001608);     DK(KP503537032, +0.503537032863766627246873853868466977093348562);     DK(KP113854479, +0.113854479055790798974654345867655310534642560);     DK(KP265966249, +0.265966249214837287587521063842185948798330267);     DK(KP387390585, +0.387390585467617292130675966426762851778775217);     DK(KP866025403, +0.866025403784438646763723170752936183471402627);     DK(KP300462606, +0.300462606288665774426601772289207995520941381);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     int i;     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs) {	  E T1, T1q, Tt, Tu, To, T22, T20, T24, TF, TH, TA, TI, T1X, T25, T2a;	  E T2d, T18, T1n, T2k, T2n, T1l, T1r, T1f, T1o, T2h, T2m;	  T1 = ri[0];	  T1q = ii[0];	  {	       E Tf, Tp, Tb, TC, Tx, T6, TB, Tw, Ti, Tq, Tl, Tr, Tm, Ts, Td;	       E Te, Tc, Tn;	       Td = ri[WS(is, 8)];	       Te = ri[WS(is, 5)];	       Tf = Td + Te;	       Tp = Td - Te;	       {		    E T7, T8, T9, Ta;		    T7 = ri[WS(is, 12)];		    T8 = ri[WS(is, 10)];		    T9 = ri[WS(is, 4)];		    Ta = T8 + T9;		    Tb = T7 + Ta;		    TC = T8 - T9;		    Tx = FNMS(KP500000000, Ta, T7);	       }	       {		    E T2, T3, T4, T5;		    T2 = ri[WS(is, 1)];		    T3 = ri[WS(is, 3)];		    T4 = ri[WS(is, 9)];		    T5 = T3 + T4;		    T6 = T2 + T5;		    TB = T3 - T4;		    Tw = FNMS(KP500000000, T5, T2);	       }	       {		    E Tg, Th, Tj, Tk;		    Tg = ri[WS(is, 11)];		    Th = ri[WS(is, 6)];		    Ti = Tg + Th;		    Tq = Tg - Th;		    Tj = ri[WS(is, 7)];		    Tk = ri[WS(is, 2)];		    Tl = Tj + Tk;		    Tr = Tj - Tk;	       }	       Tm = Ti + Tl;	       Ts = Tq + Tr;	       Tt = Tp + Ts;	       Tu = T6 - Tb;	       Tc = T6 + Tb;	       Tn = Tf + Tm;	       To = Tc + Tn;	       T22 = KP300462606 * (Tc - Tn);	       {		    E T1Y, T1Z, TD, TE;		    T1Y = TB + TC;		    T1Z = Tq - Tr;		    T20 = T1Y - T1Z;		    T24 = T1Y + T1Z;		    TD = KP866025403 * (TB - TC);		    TE = FNMS(KP500000000, Ts, Tp);		    TF = TD - TE;		    TH = TD + TE;	       }	       {		    E Ty, Tz, T1V, T1W;		    Ty = Tw - Tx;		    Tz = KP866025403 * (Ti - Tl);		    TA = Ty + Tz;		    TI = Ty - Tz;		    T1V = Tw + Tx;		    T1W = FNMS(KP500000000, Tm, Tf);		    T1X = T1V - T1W;		    T25 = T1V + T1W;	       }	  }	  {	       E TZ, T2b, TV, T1i, T1a, TQ, T1h, T19, T12, T1d, T15, T1c, T16, T2c, TX;	       E TY, TW, T17;	       TX = ii[WS(is, 8)];	       TY = ii[WS(is, 5)];	       TZ = TX + TY;	       T2b = TX - TY;	       {		    E TR, TS, TT, TU;		    TR = ii[WS(is, 12)];		    TS = ii[WS(is, 10)];		    TT = ii[WS(is, 4)];		    TU = TS + TT;		    TV = FNMS(KP500000000, TU, TR);		    T1i = TR + TU;		    T1a = TS - TT;	       }	       {		    E TM, TN, TO, TP;		    TM = ii[WS(is, 1)];		    TN = ii[WS(is, 3)];		    TO = ii[WS(is, 9)];		    TP = TN + TO;		    TQ = FNMS(KP500000000, TP, TM);		    T1h = TM + TP;		    T19 = TN - TO;	       }	       {		    E T10, T11, T13, T14;		    T10 = ii[WS(is, 11)];		    T11 = ii[WS(is, 6)];		    T12 = T10 + T11;		    T1d = T10 - T11;		    T13 = ii[WS(is, 7)];		    T14 = ii[WS(is, 2)];		    T15 = T13 + T14;		    T1c = T13 - T14;	       }	       T16 = T12 + T15;	       T2c = T1d + T1c;	       T2a = T1h - T1i;	       T2d = T2b + T2c;	       TW = TQ + TV;	       T17 = FNMS(KP500000000, T16, TZ);	       T18 = TW - T17;	       T1n = TW + T17;	       {		    E T2i, T2j, T1j, T1k;		    T2i = TQ - TV;		    T2j = KP866025403 * (T15 - T12);		    T2k = T2i + T2j;		    T2n = T2i - T2j;		    T1j = T1h + T1i;		    T1k = TZ + T16;		    T1l = KP300462606 * (T1j - T1k);		    T1r = T1j + T1k;	       }	       {		    E T1b, T1e, T2f, T2g;		    T1b = T19 + T1a;		    T1e = T1c - T1d;		    T1f = T1b + T1e;		    T1o = T1e - T1b;		    T2f = FNMS(KP500000000, T2c, T2b);		    T2g = KP866025403 * (T1a - T19);		    T2h = T2f - T2g;		    T2m = T2g + T2f;	       }	  }	  ro[0] = T1 + To;	  io[0] = T1q + T1r;	  {	       E T1D, T1N, T1y, T1x, T1E, T1O, Tv, TK, T1J, T1Q, T1m, T1R, T1t, T1I, TG;	       E TJ;	       {		    E T1B, T1C, T1v, T1w;		    T1B = FMA(KP387390585, T1f, KP265966249 * T18);		    T1C = FMA(KP113854479, T1o, KP503537032 * T1n);		    T1D = T1B + T1C;		    T1N = T1C - T1B;		    T1y = FMA(KP575140729, Tu, KP174138601 * Tt);		    T1v = FNMS(KP156891391, TH, KP256247671 * TI);		    T1w = FMA(KP011599105, TF, KP300238635 * TA);		    T1x = T1v - T1w;		    T1E = T1y + T1x;		    T1O = KP1_732050807 * (T1v + T1w);	       }	       Tv = FNMS(KP174138601, Tu, KP575140729 * Tt);	       TG = FNMS(KP300238635, TF, KP011599105 * TA);	       TJ = FMA(KP256247671, TH, KP156891391 * TI);	       TK = TG - TJ;	       T1J = KP1_732050807 * (TJ + TG);	       T1Q = Tv - TK;	       {		    E T1g, T1H, T1p, T1s, T1G;		    T1g = FNMS(KP132983124, T1f, KP258260390 * T18);		    T1H = T1l - T1g;		    T1p = FNMS(KP251768516, T1o, KP075902986 * T1n);		    T1s = FNMS(KP083333333, T1r, T1q);		    T1G = T1s - T1p;		    T1m = FMA(KP2_000000000, T1g, T1l);		    T1R = T1H + T1G;		    T1t = FMA(KP2_000000000, T1p, T1s);		    T1I = T1G - T1H;	       }	       {		    E TL, T1u, T1P, T1S;		    TL = FMA(KP2_000000000, TK, Tv);		    T1u = T1m + T1t;		    io[WS(os, 1)] = TL + T1u;		    io[WS(os, 12)] = T1u - TL;		    {			 E T1z, T1A, T1T, T1U;			 T1z = FMS(KP2_000000000, T1x, T1y);			 T1A = T1t - T1m;			 io[WS(os, 5)] = T1z + T1A;			 io[WS(os, 8)] = T1A - T1z;			 T1T = T1R - T1Q;			 T1U = T1O + T1N;			 io[WS(os, 4)] = T1T - T1U;			 io[WS(os, 10)] = T1U + T1T;		    }		    T1P = T1N - T1O;		    T1S = T1Q + T1R;		    io[WS(os, 3)] = T1P + T1S;		    io[WS(os, 9)] = T1S - T1P;		    {			 E T1L, T1M, T1F, T1K;			 T1L = T1J + T1I;			 T1M = T1E + T1D;			 io[WS(os, 6)] = T1L - T1M;			 io[WS(os, 11)] = T1M + T1L;			 T1F = T1D - T1E;			 T1K = T1I - T1J;			 io[WS(os, 2)] = T1F + T1K;			 io[WS(os, 7)] = T1K - T1F;		    }	       }	  }	  {	       E T2y, T2I, T2J, T2K, T2B, T2L, T2e, T2p, T2u, T2G, T23, T2F, T28, T2t, T2l;	       E T2o;	       {		    E T2w, T2x, T2z, T2A;		    T2w = FMA(KP387390585, T20, KP265966249 * T1X);		    T2x = FNMS(KP503537032, T25, KP113854479 * T24);		    T2y = T2w + T2x;		    T2I = T2w - T2x;		    T2J = FMA(KP575140729, T2a, KP174138601 * T2d);		    T2z = FNMS(KP300238635, T2n, KP011599105 * T2m);		    T2A = FNMS(KP156891391, T2h, KP256247671 * T2k);		    T2K = T2z + T2A;		    T2B = KP1_732050807 * (T2z - T2A);		    T2L = T2J + T2K;	       }	       T2e = FNMS(KP575140729, T2d, KP174138601 * T2a);	       T2l = FMA(KP256247671, T2h, KP156891391 * T2k);	       T2o = FMA(KP300238635, T2m, KP011599105 * T2n);	       T2p = T2l - T2o;	       T2u = T2e - T2p;	       T2G = KP1_732050807 * (T2o + T2l);	       {		    E T21, T2r, T26, T27, T2s;		    T21 = FNMS(KP132983124, T20, KP258260390 * T1X);		    T2r = T22 - T21;		    T26 = FMA(KP251768516, T24, KP075902986 * T25);		    T27 = FNMS(KP083333333, To, T1);		    T2s = T27 - T26;		    T23 = FMA(KP2_000000000, T21, T22);		    T2F = T2s - T2r;		    T28 = FMA(KP2_000000000, T26, T27);		    T2t = T2r + T2s;	       }	       {		    E T29, T2q, T2N, T2O;		    T29 = T23 + T28;		    T2q = FMA(KP2_000000000, T2p, T2e);		    ro[WS(os, 12)] = T29 - T2q;		    ro[WS(os, 1)] = T29 + T2q;		    {			 E T2v, T2C, T2P, T2Q;			 T2v = T2t - T2u;			 T2C = T2y - T2B;			 ro[WS(os, 10)] = T2v - T2C;			 ro[WS(os, 4)] = T2v + T2C;			 T2P = T28 - T23;			 T2Q = FMS(KP2_000000000, T2K, T2J);			 ro[WS(os, 5)] = T2P - T2Q;			 ro[WS(os, 8)] = T2P + T2Q;		    }		    T2N = T2F - T2G;		    T2O = T2L - T2I;		    ro[WS(os, 11)] = T2N - T2O;		    ro[WS(os, 6)] = T2N + T2O;		    {			 E T2H, T2M, T2D, T2E;			 T2H = T2F + T2G;			 T2M = T2I + T2L;			 ro[WS(os, 7)] = T2H - T2M;			 ro[WS(os, 2)] = T2H + T2M;			 T2D = T2t + T2u;			 T2E = T2y + T2B;			 ro[WS(os, 3)] = T2D - T2E;			 ro[WS(os, 9)] = T2D + T2E;		    }	       }	  }     }}static const kdft_desc desc = { 13, "n1_13", {138, 30, 38, 0}, &GENUS, 0, 0, 0, 0 };void X(codelet_n1_13) (planner *p) {     X(kdft_register) (p, n1_13, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -