📄 t1_64.c
字号:
Tf5 = TeH - TeO; Tf8 = Tf6 - Tf7; ri[WS(ios, 58)] = Tf5 - Tf8; ri[WS(ios, 26)] = Tf5 + Tf8; Thx = Tf3 - TeW; Thy = Thv - Thu; ii[WS(ios, 26)] = Thx + Thy; ii[WS(ios, 58)] = Thy - Thx; } { E Tfd, Tfk, Thj, Thq; Tfd = Tf9 + Tfc; Tfk = Tfg + Tfj; ri[WS(ios, 34)] = Tfd - Tfk; ri[WS(ios, 2)] = Tfd + Tfk; Thj = Tfm + Tfn; Thq = Thk + Thp; ii[WS(ios, 2)] = Thj + Thq; ii[WS(ios, 34)] = Thq - Thj; } { E Tfl, Tfo, Thr, Ths; Tfl = Tf9 - Tfc; Tfo = Tfm - Tfn; ri[WS(ios, 50)] = Tfl - Tfo; ri[WS(ios, 18)] = Tfl + Tfo; Thr = Tfj - Tfg; Ths = Thp - Thk; ii[WS(ios, 18)] = Thr + Ths; ii[WS(ios, 50)] = Ths - Thr; } } { E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; E T9H; { E T6n, T6K, TiB, TiC; T6n = T6b - T6m; T6K = T6y - T6J; T6L = T6n - T6K; T9x = T6n + T6K; TiB = T9P - T9O; TiC = Tin - Tim; TiD = TiB + TiC; TiJ = TiC - TiB; } { E T7c, T9y, T7D, T9z; { E T72, T7b, T7t, T7C; T72 = T6Q - T71; T7b = T77 - T7a; T7c = FNMS(KP980785280, T7b, KP195090322 * T72); T9y = FMA(KP980785280, T72, KP195090322 * T7b); T7t = T7h - T7s; T7C = T7y - T7B; T7D = FMA(KP195090322, T7t, KP980785280 * T7C); T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); } T7E = T7c - T7D; TiI = T9z - T9y; T9A = T9y + T9z; TiA = T7c + T7D; } { E T8k, T9C, T8x, T9D; { E T7W, T8j, T8t, T8w; T7W = T7K - T7V; T8j = T87 - T8i; T8k = T7W - T8j; T9C = T7W + T8j; T8t = T8p - T8s; T8w = T8u - T8v; T8x = T8t - T8w; T9D = T8t + T8w; } T8y = FMA(KP995184726, T8k, KP098017140 * T8x); T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); T9E = FMA(KP634393284, T9C, KP773010453 * T9D); } { E T9d, T9F, T9q, T9G; { E T8P, T9c, T9m, T9p; T8P = T8D - T8O; T9c = T90 - T9b; T9d = T8P - T9c; T9F = T8P + T9c; T9m = T9i - T9l; T9p = T9n - T9o; T9q = T9m - T9p; T9G = T9m + T9p; } T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); T9L = FMA(KP773010453, T9G, KP634393284 * T9F); T9v = FMA(KP098017140, T9q, KP995184726 * T9d); T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); } { E T7F, T9s, TiH, TiK; T7F = T6L + T7E; T9s = T8y + T9r; ri[WS(ios, 47)] = T7F - T9s; ri[WS(ios, 15)] = T7F + T9s; TiH = T9u + T9v; TiK = TiI + TiJ; ii[WS(ios, 15)] = TiH + TiK; ii[WS(ios, 47)] = TiK - TiH; } { E T9t, T9w, TiL, TiM; T9t = T6L - T7E; T9w = T9u - T9v; ri[WS(ios, 63)] = T9t - T9w; ri[WS(ios, 31)] = T9t + T9w; TiL = T9r - T8y; TiM = TiJ - TiI; ii[WS(ios, 31)] = TiL + TiM; ii[WS(ios, 63)] = TiM - TiL; } { E T9B, T9I, Tiz, TiE; T9B = T9x + T9A; T9I = T9E + T9H; ri[WS(ios, 39)] = T9B - T9I; ri[WS(ios, 7)] = T9B + T9I; Tiz = T9K + T9L; TiE = TiA + TiD; ii[WS(ios, 7)] = Tiz + TiE; ii[WS(ios, 39)] = TiE - Tiz; } { E T9J, T9M, TiF, TiG; T9J = T9x - T9A; T9M = T9K - T9L; ri[WS(ios, 55)] = T9J - T9M; ri[WS(ios, 23)] = T9J + T9M; TiF = T9H - T9E; TiG = TiD - TiA; ii[WS(ios, 23)] = TiF + TiG; ii[WS(ios, 55)] = TiG - TiF; } } { E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; E TbT; { E TaD, TaK, Ti7, Ti8; TaD = Taz - TaC; TaK = TaG - TaJ; TaL = TaD - TaK; TbJ = TaD + TaK; Ti7 = Tc1 - Tc0; Ti8 = ThT - ThQ; Ti9 = Ti7 + Ti8; Tif = Ti8 - Ti7; } { E TaS, TbK, TaZ, TbL; { E TaO, TaR, TaV, TaY; TaO = TaM - TaN; TaR = TaP - TaQ; TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); TbK = FMA(KP555570233, TaR, KP831469612 * TaO); TaV = TaT - TaU; TaY = TaW - TaX; TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); } Tb0 = TaS - TaZ; Tie = TbL - TbK; TbM = TbK + TbL; Ti6 = TaS + TaZ; } { E Tbc, TbO, Tbj, TbP; { E Tb4, Tbb, Tbf, Tbi; Tb4 = Tb2 - Tb3; Tbb = Tb7 - Tba; Tbc = Tb4 - Tbb; TbO = Tb4 + Tbb; Tbf = Tbd - Tbe; Tbi = Tbg - Tbh; Tbj = Tbf - Tbi; TbP = Tbf + Tbi; } Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); } { E Tbv, TbR, TbC, TbS; { E Tbn, Tbu, Tby, TbB; Tbn = Tbl - Tbm; Tbu = Tbq - Tbt; Tbv = Tbn - Tbu; TbR = Tbn + Tbu; Tby = Tbw - Tbx; TbB = Tbz - TbA; TbC = Tby - TbB; TbS = Tby + TbB; } TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); TbX = FMA(KP881921264, TbS, KP471396736 * TbR); TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); } { E Tb1, TbE, Tid, Tig; Tb1 = TaL + Tb0; TbE = Tbk + TbD; ri[WS(ios, 45)] = Tb1 - TbE; ri[WS(ios, 13)] = Tb1 + TbE; Tid = TbG + TbH; Tig = Tie + Tif; ii[WS(ios, 13)] = Tid + Tig; ii[WS(ios, 45)] = Tig - Tid; } { E TbF, TbI, Tih, Tii; TbF = TaL - Tb0; TbI = TbG - TbH; ri[WS(ios, 61)] = TbF - TbI; ri[WS(ios, 29)] = TbF + TbI; Tih = TbD - Tbk; Tii = Tif - Tie; ii[WS(ios, 29)] = Tih + Tii; ii[WS(ios, 61)] = Tii - Tih; } { E TbN, TbU, Ti5, Tia; TbN = TbJ + TbM; TbU = TbQ + TbT; ri[WS(ios, 37)] = TbN - TbU; ri[WS(ios, 5)] = TbN + TbU; Ti5 = TbW + TbX; Tia = Ti6 + Ti9; ii[WS(ios, 5)] = Ti5 + Tia; ii[WS(ios, 37)] = Tia - Ti5; } { E TbV, TbY, Tib, Tic; TbV = TbJ - TbM; TbY = TbW - TbX; ri[WS(ios, 53)] = TbV - TbY; ri[WS(ios, 21)] = TbV + TbY; Tib = TbT - TbQ; Tic = Ti9 - Ti6; ii[WS(ios, 21)] = Tib + Tic; ii[WS(ios, 53)] = Tic - Tib; } } { E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; E TcF; { E TbZ, Tc2, ThP, ThU; TbZ = Taz + TaC; Tc2 = Tc0 + Tc1; Tc3 = TbZ - Tc2; Tcv = TbZ + Tc2; ThP = TaG + TaJ; ThU = ThQ + ThT; ThV = ThP + ThU; Ti1 = ThU - ThP; } { E Tc6, Tcw, Tc9, Tcx; { E Tc4, Tc5, Tc7, Tc8; Tc4 = TaM + TaN; Tc5 = TaP + TaQ; Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); Tc7 = TaT + TaU; Tc8 = TaW + TaX; Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); } Tca = Tc6 - Tc9; Ti0 = Tcx - Tcw; Tcy = Tcw + Tcx; ThO = Tc6 + Tc9; } { E Tce, TcA, Tch, TcB; { E Tcc, Tcd, Tcf, Tcg; Tcc = Tbd + Tbe; Tcd = Tba + Tb7; Tce = Tcc - Tcd; TcA = Tcc + Tcd; Tcf = Tb2 + Tb3; Tcg = Tbg + Tbh; Tch = Tcf - Tcg; TcB = Tcf + Tcg; } Tci = FMA(KP634393284, Tce, KP773010453 * Tch); TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); TcC = FMA(KP995184726, TcA, KP098017140 * TcB); } { E Tcl, TcD, Tco, TcE; { E Tcj, Tck, Tcm, Tcn; Tcj = Tbl + Tbm; Tck = TbA + Tbz; Tcl = Tcj - Tck; TcD = Tcj + Tck; Tcm = Tbw + Tbx; Tcn = Tbq + Tbt; Tco = Tcm - Tcn; TcE = Tcm + Tcn; } Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); } { E Tcb, Tcq, ThZ, Ti2; Tcb = Tc3 + Tca; Tcq = Tci + Tcp; ri[WS(ios, 41)] = Tcb - Tcq; ri[WS(ios, 9)] = Tcb + Tcq; ThZ = Tcs + Tct; Ti2 = Ti0 + Ti1; ii[WS(ios, 9)] = ThZ + Ti2; ii[WS(ios, 41)] = Ti2 - ThZ; } { E Tcr, Tcu, Ti3, Ti4; Tcr = Tc3 - Tca; Tcu = Tcs - Tct; ri[WS(ios, 57)] = Tcr - Tcu; ri[WS(ios, 25)] = Tcr + Tcu; Ti3 = Tcp - Tci; Ti4 = Ti1 - Ti0; ii[WS(ios, 25)] = Ti3 + Ti4; ii[WS(ios, 57)] = Ti4 - Ti3; } { E Tcz, TcG, ThN, ThW; Tcz = Tcv + Tcy; TcG = TcC + TcF; ri[WS(ios, 33)] = Tcz - TcG; ri[WS(ios, 1)] = Tcz + TcG; ThN = TcI + TcJ; ThW = ThO + ThV; ii[WS(ios, 1)] = ThN + ThW; ii[WS(ios, 33)] = ThW - ThN; } { E TcH, TcK, ThX, ThY; TcH = Tcv - Tcy; TcK = TcI - TcJ; ri[WS(ios, 49)] = TcH - TcK; ri[WS(ios, 17)] = TcH + TcK; ThX = TcF - TcC; ThY = ThV - ThO; ii[WS(ios, 17)] = ThX + ThY; ii[WS(ios, 49)] = ThY - ThX; } } { E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; E Tat; { E T9N, T9Q, Til, Tio; T9N = T6b + T6m; T9Q = T9O + T9P; T9R = T9N - T9Q; Taj = T9N + T9Q; Til = T6y + T6J; Tio = Tim + Tin; Tip = Til + Tio; Tiv = Tio - Til; } { E T9U, Tak, T9X, Tal; { E T9S, T9T, T9V, T9W; T9S = T6Q + T71; T9T = T77 + T7a; T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); Tak = FMA(KP555570233, T9S, KP831469612 * T9T); T9V = T7h + T7s; T9W = T7y + T7B; T9X = FMA(KP831469612, T9V, KP555570233 * T9W); Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); } T9Y = T9U - T9X; Tiu = Tal - Tak; Tam = Tak + Tal; Tik = T9U + T9X; } { E Ta2, Tao, Ta5, Tap; { E Ta0, Ta1, Ta3, Ta4; Ta0 = T8p + T8s; Ta1 = T8i + T87; Ta2 = Ta0 - Ta1; Tao = Ta0 + Ta1; Ta3 = T7K + T7V; Ta4 = T8u + T8v; Ta5 = Ta3 - Ta4; Tap = Ta3 + Ta4; } Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); Taq = FMA(KP956940335, Tao, KP290284677 * Tap); } { E Ta9, Tar, Tac, Tas; { E Ta7, Ta8, Taa, Tab; Ta7 = T8D + T8O; Ta8 = T9o + T9n; Ta9 = Ta7 - Ta8; Tar = Ta7 + Ta8; Taa = T9i + T9l; Tab = T90 + T9b; Tac = Taa - Tab; Tas = Taa + Tab; } Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); Tax = FMA(KP290284677, Tar, KP956940335 * Tas); Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); } { E T9Z, Tae, Tit, Tiw; T9Z = T9R + T9Y; Tae = Ta6 + Tad; ri[WS(ios, 43)] = T9Z - Tae; ri[WS(ios, 11)] = T9Z + Tae; Tit = Tag + Tah; Tiw = Tiu + Tiv; ii[WS(ios, 11)] = Tit + Tiw; ii[WS(ios, 43)] = Tiw - Tit; } { E Taf, Tai, Tix, Tiy; Taf = T9R - T9Y; Tai = Tag - Tah; ri[WS(ios, 59)] = Taf - Tai; ri[WS(ios, 27)] = Taf + Tai; Tix = Tad - Ta6; Tiy = Tiv - Tiu; ii[WS(ios, 27)] = Tix + Tiy; ii[WS(ios, 59)] = Tiy - Tix; } { E Tan, Tau, Tij, Tiq; Tan = Taj + Tam; Tau = Taq + Tat; ri[WS(ios, 35)] = Tan - Tau; ri[WS(ios, 3)] = Tan + Tau; Tij = Taw + Tax; Tiq = Tik + Tip; ii[WS(ios, 3)] = Tij + Tiq; ii[WS(ios, 35)] = Tiq - Tij; } { E Tav, Tay, Tir, Tis; Tav = Taj - Tam; Tay = Taw - Tax; ri[WS(ios, 51)] = Tav - Tay; ri[WS(ios, 19)] = Tav + Tay; Tir = Tat - Taq; Tis = Tip - Tik; ii[WS(ios, 19)] = Tir + Tis; ii[WS(ios, 51)] = Tis - Tir; } } } return W;}static const tw_instr twinstr[] = { {TW_FULL, 0, 64}, {TW_NEXT, 1, 0}};static const ct_desc desc = { 64, "t1_64", twinstr, {808, 270, 230, 0}, &GENUS, 0, 0, 0 };void X(codelet_t1_64) (planner *p) { X(kdft_dit_register) (p, t1_64, &desc);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -