⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_64.c

📁 fftw-3.0.1
💻 C
📖 第 1 页 / 共 4 页
字号:
		    Tb9 = T8d + T8g;		    Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9);		    Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8);	       }	       {		    E Tdv, Tdy, Tb5, Tb6;		    Tdv = T4k - T4v;		    Tdy = Tdw - Tdx;		    Tdz = Tdv - Tdy;		    TdN = Tdv + Tdy;		    Tb5 = T7X + T80;		    Tb6 = T84 - T85;		    Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5);		    Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5);	       }	  }	  {	       E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93;	       E T96;	       {		    E T5o, T8Q, T5t, T8R;		    {			 E T5l, T5n, T5k, T5m;			 T5l = ri[WS(ios, 3)];			 T5n = ii[WS(ios, 3)];			 T5k = W[4];			 T5m = W[5];			 T5o = FMA(T5k, T5l, T5m * T5n);			 T8Q = FNMS(T5m, T5l, T5k * T5n);		    }		    {			 E T5q, T5s, T5p, T5r;			 T5q = ri[WS(ios, 35)];			 T5s = ii[WS(ios, 35)];			 T5p = W[68];			 T5r = W[69];			 T5t = FMA(T5p, T5q, T5r * T5s);			 T8R = FNMS(T5r, T5q, T5p * T5s);		    }		    T5u = T5o + T5t;		    TdW = T8Q + T8R;		    T8S = T8Q - T8R;		    T8V = T5o - T5t;	       }	       {		    E T5W, T97, T61, T98;		    {			 E T5T, T5V, T5S, T5U;			 T5T = ri[WS(ios, 11)];			 T5V = ii[WS(ios, 11)];			 T5S = W[20];			 T5U = W[21];			 T5W = FMA(T5S, T5T, T5U * T5V);			 T97 = FNMS(T5U, T5T, T5S * T5V);		    }		    {			 E T5Y, T60, T5X, T5Z;			 T5Y = ri[WS(ios, 43)];			 T60 = ii[WS(ios, 43)];			 T5X = W[84];			 T5Z = W[85];			 T61 = FMA(T5X, T5Y, T5Z * T60);			 T98 = FNMS(T5Z, T5Y, T5X * T60);		    }		    T62 = T5W + T61;		    Te3 = T97 + T98;		    T94 = T5W - T61;		    T99 = T97 - T98;	       }	       {		    E T5z, T8W, T5E, T8X;		    {			 E T5w, T5y, T5v, T5x;			 T5w = ri[WS(ios, 19)];			 T5y = ii[WS(ios, 19)];			 T5v = W[36];			 T5x = W[37];			 T5z = FMA(T5v, T5w, T5x * T5y);			 T8W = FNMS(T5x, T5w, T5v * T5y);		    }		    {			 E T5B, T5D, T5A, T5C;			 T5B = ri[WS(ios, 51)];			 T5D = ii[WS(ios, 51)];			 T5A = W[100];			 T5C = W[101];			 T5E = FMA(T5A, T5B, T5C * T5D);			 T8X = FNMS(T5C, T5B, T5A * T5D);		    }		    T5F = T5z + T5E;		    TdX = T8W + T8X;		    T8T = T5z - T5E;		    T8Y = T8W - T8X;	       }	       {		    E T5L, T91, T5Q, T92;		    {			 E T5I, T5K, T5H, T5J;			 T5I = ri[WS(ios, 59)];			 T5K = ii[WS(ios, 59)];			 T5H = W[116];			 T5J = W[117];			 T5L = FMA(T5H, T5I, T5J * T5K);			 T91 = FNMS(T5J, T5I, T5H * T5K);		    }		    {			 E T5N, T5P, T5M, T5O;			 T5N = ri[WS(ios, 27)];			 T5P = ii[WS(ios, 27)];			 T5M = W[52];			 T5O = W[53];			 T5Q = FMA(T5M, T5N, T5O * T5P);			 T92 = FNMS(T5O, T5N, T5M * T5P);		    }		    T5R = T5L + T5Q;		    Te2 = T91 + T92;		    T93 = T91 - T92;		    T96 = T5L - T5Q;	       }	       {		    E T5G, T63, Te1, Te4;		    T5G = T5u + T5F;		    T63 = T5R + T62;		    T64 = T5G + T63;		    TfZ = T63 - T5G;		    Te1 = T5R - T62;		    Te4 = Te2 - Te3;		    Te5 = Te1 + Te4;		    Ted = Te1 - Te4;	       }	       {		    E TfS, TfT, T8U, T8Z;		    TfS = TdW + TdX;		    TfT = Te2 + Te3;		    TfU = TfS - TfT;		    Tgz = TfS + TfT;		    T8U = T8S + T8T;		    T8Z = T8V - T8Y;		    T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U);		    T9o = FMA(KP923879532, T8U, KP382683432 * T8Z);	       }	       {		    E T95, T9a, Tbr, Tbs;		    T95 = T93 + T94;		    T9a = T96 - T99;		    T9b = FMA(KP382683432, T95, KP923879532 * T9a);		    T9n = FNMS(KP923879532, T95, KP382683432 * T9a);		    Tbr = T93 - T94;		    Tbs = T96 + T99;		    Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs);		    Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs);	       }	       {		    E TdY, TdZ, Tbo, Tbp;		    TdY = TdW - TdX;		    TdZ = T5u - T5F;		    Te0 = TdY - TdZ;		    Tee = TdZ + TdY;		    Tbo = T8S - T8T;		    Tbp = T8V + T8Y;		    Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo);		    TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp);	       }	  }	  {	       E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;	       E TgM;	       {		    E TH, T1s, TgI, TgJ;		    TH = Tj + TG;		    T1s = T14 + T1r;		    T1t = TH + T1s;		    Tgn = TH - T1s;		    TgI = Tgt + Tgu;		    TgJ = Tgy + Tgz;		    TgK = TgI - TgJ;		    TgL = TgI + TgJ;	       }	       {		    E TgN, TgU, T2e, T2Z;		    TgN = Tfq + Tfr;		    TgU = TgO + TgT;		    TgV = TgN + TgU;		    Th1 = TgU - TgN;		    T2e = T1Q + T2d;		    T2Z = T2B + T2Y;		    T30 = T2e + T2Z;		    Th0 = T2Z - T2e;	       }	       {		    E T4y, T65, Tgs, Tgv;		    T4y = T3M + T4x;		    T65 = T5j + T64;		    T66 = T4y + T65;		    TgX = T65 - T4y;		    Tgs = T3M - T4x;		    Tgv = Tgt - Tgu;		    Tgw = Tgs + Tgv;		    TgE = Tgv - Tgs;	       }	       {		    E Tgx, TgA, Tgo, Tgp;		    Tgx = T5j - T64;		    TgA = Tgy - Tgz;		    TgB = Tgx - TgA;		    TgF = Tgx + TgA;		    Tgo = Tfu + Tfv;		    Tgp = TfA + TfB;		    Tgq = Tgo - Tgp;		    TgM = Tgo + Tgp;	       }	       {		    E T31, TgW, TgH, TgY;		    T31 = T1t + T30;		    ri[WS(ios, 32)] = T31 - T66;		    ri[0] = T31 + T66;		    TgW = TgM + TgV;		    ii[0] = TgL + TgW;		    ii[WS(ios, 32)] = TgW - TgL;		    TgH = T1t - T30;		    ri[WS(ios, 48)] = TgH - TgK;		    ri[WS(ios, 16)] = TgH + TgK;		    TgY = TgV - TgM;		    ii[WS(ios, 16)] = TgX + TgY;		    ii[WS(ios, 48)] = TgY - TgX;	       }	       {		    E Tgr, TgC, TgZ, Th2;		    Tgr = Tgn + Tgq;		    TgC = KP707106781 * (Tgw + TgB);		    ri[WS(ios, 40)] = Tgr - TgC;		    ri[WS(ios, 8)] = Tgr + TgC;		    TgZ = KP707106781 * (TgE + TgF);		    Th2 = Th0 + Th1;		    ii[WS(ios, 8)] = TgZ + Th2;		    ii[WS(ios, 40)] = Th2 - TgZ;	       }	       {		    E TgD, TgG, Th3, Th4;		    TgD = Tgn - Tgq;		    TgG = KP707106781 * (TgE - TgF);		    ri[WS(ios, 56)] = TgD - TgG;		    ri[WS(ios, 24)] = TgD + TgG;		    Th3 = KP707106781 * (TgB - Tgw);		    Th4 = Th1 - Th0;		    ii[WS(ios, 24)] = Th3 + Th4;		    ii[WS(ios, 56)] = Th4 - Th3;	       }	  }	  {	       E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;	       E Tg5;	       {		    E Tfp, Tfs, Tgf, Tgg;		    Tfp = Tj - TG;		    Tfs = Tfq - Tfr;		    Tft = Tfp - Tfs;		    Tg7 = Tfp + Tfs;		    Tgf = TfR + TfU;		    Tgg = TfY + TfZ;		    Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf);		    Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf);	       }	       {		    E Th7, Th8, Tfy, TfD;		    Th7 = T1r - T14;		    Th8 = TgT - TgO;		    Th9 = Th7 + Th8;		    Thf = Th8 - Th7;		    Tfy = Tfw - Tfx;		    TfD = Tfz + TfC;		    TfE = KP707106781 * (Tfy - TfD);		    Th6 = KP707106781 * (Tfy + TfD);	       }	       {		    E TfK, TfP, Tg8, Tg9;		    TfK = TfI - TfJ;		    TfP = TfL - TfO;		    TfQ = FMA(KP923879532, TfK, KP382683432 * TfP);		    Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK);		    Tg8 = Tfx + Tfw;		    Tg9 = Tfz - TfC;		    Tga = KP707106781 * (Tg8 + Tg9);		    The = KP707106781 * (Tg9 - Tg8);	       }	       {		    E Tgc, Tgd, TfV, Tg0;		    Tgc = TfI + TfJ;		    Tgd = TfL + TfO;		    Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd);		    Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc);		    TfV = TfR - TfU;		    Tg0 = TfY - TfZ;		    Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV);		    Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV);	       }	       {		    E TfF, Tg2, Thd, Thg;		    TfF = Tft + TfE;		    Tg2 = TfQ + Tg1;		    ri[WS(ios, 44)] = TfF - Tg2;		    ri[WS(ios, 12)] = TfF + Tg2;		    Thd = Tg4 + Tg5;		    Thg = The + Thf;		    ii[WS(ios, 12)] = Thd + Thg;		    ii[WS(ios, 44)] = Thg - Thd;	       }	       {		    E Tg3, Tg6, Thh, Thi;		    Tg3 = Tft - TfE;		    Tg6 = Tg4 - Tg5;		    ri[WS(ios, 60)] = Tg3 - Tg6;		    ri[WS(ios, 28)] = Tg3 + Tg6;		    Thh = Tg1 - TfQ;		    Thi = Thf - The;		    ii[WS(ios, 28)] = Thh + Thi;		    ii[WS(ios, 60)] = Thi - Thh;	       }	       {		    E Tgb, Tgi, Th5, Tha;		    Tgb = Tg7 + Tga;		    Tgi = Tge + Tgh;		    ri[WS(ios, 36)] = Tgb - Tgi;		    ri[WS(ios, 4)] = Tgb + Tgi;		    Th5 = Tgk + Tgl;		    Tha = Th6 + Th9;		    ii[WS(ios, 4)] = Th5 + Tha;		    ii[WS(ios, 36)] = Tha - Th5;	       }	       {		    E Tgj, Tgm, Thb, Thc;		    Tgj = Tg7 - Tga;		    Tgm = Tgk - Tgl;		    ri[WS(ios, 52)] = Tgj - Tgm;		    ri[WS(ios, 20)] = Tgj + Tgm;		    Thb = Tgh - Tge;		    Thc = Th9 - Th6;		    ii[WS(ios, 20)] = Thb + Thc;		    ii[WS(ios, 52)] = Thc - Thb;	       }	  }	  {	       E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;	       E Teu;	       {		    E TcP, Td0, Teo, Tep;		    TcP = TcL - TcO;		    Td0 = KP707106781 * (TcU - TcZ);		    Td1 = TcP - Td0;		    Ten = TcP + Td0;		    {			 E Tdc, Tdn, ThB, ThC;			 Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);			 Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm);			 Tdo = Tdc - Tdn;			 ThA = Tdc + Tdn;			 ThB = KP707106781 * (TeF - TeE);			 ThC = Thn - Thm;			 ThD = ThB + ThC;			 ThJ = ThC - ThB;		    }		    Teo = FMA(KP923879532, Td6, KP382683432 * Tdb);		    Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm);		    Teq = Teo + Tep;		    ThI = Tep - Teo;		    {			 E Te7, Tev, Teg, Tew, Te6, Tef;			 Te6 = KP707106781 * (Te0 - Te5);			 Te7 = TdV - Te6;			 Tev = TdV + Te6;			 Tef = KP707106781 * (Ted - Tee);			 Teg = Tec - Tef;			 Tew = Tec + Tef;			 Teh = FNMS(KP980785280, Teg, KP195090322 * Te7);			 TeB = FMA(KP831469612, Tew, KP555570233 * Tev);			 Tel = FMA(KP195090322, Teg, KP980785280 * Te7);			 Tex = FNMS(KP555570233, Tew, KP831469612 * Tev);		    }		    {			 E TdG, Tes, TdP, Tet, TdF, TdO;			 TdF = KP707106781 * (Tdz - TdE);			 TdG = Tdu - TdF;			 Tes = Tdu + TdF;			 TdO = KP707106781 * (TdM - TdN);			 TdP = TdL - TdO;			 Tet = TdL + TdO;			 TdQ = FMA(KP980785280, TdG, KP195090322 * TdP);			 TeA = FNMS(KP555570233, Tet, KP831469612 * Tes);			 Tek = FNMS(KP980785280, TdP, KP195090322 * TdG);			 Teu = FMA(KP555570233, Tes, KP831469612 * Tet);		    }	       }	       {		    E Tdp, Tei, ThH, ThK;		    Tdp = Td1 + Tdo;		    Tei = TdQ + Teh;		    ri[WS(ios, 46)] = Tdp - Tei;		    ri[WS(ios, 14)] = Tdp + Tei;		    ThH = Tek + Tel;		    ThK = ThI + ThJ;		    ii[WS(ios, 14)] = ThH + ThK;		    ii[WS(ios, 46)] = ThK - ThH;	       }	       {		    E Tej, Tem, ThL, ThM;		    Tej = Td1 - Tdo;		    Tem = Tek - Tel;		    ri[WS(ios, 62)] = Tej - Tem;		    ri[WS(ios, 30)] = Tej + Tem;		    ThL = Teh - TdQ;		    ThM = ThJ - ThI;		    ii[WS(ios, 30)] = ThL + ThM;		    ii[WS(ios, 62)] = ThM - ThL;	       }	       {		    E Ter, Tey, Thz, ThE;		    Ter = Ten + Teq;		    Tey = Teu + Tex;		    ri[WS(ios, 38)] = Ter - Tey;		    ri[WS(ios, 6)] = Ter + Tey;		    Thz = TeA + TeB;		    ThE = ThA + ThD;		    ii[WS(ios, 6)] = Thz + ThE;		    ii[WS(ios, 38)] = ThE - Thz;	       }	       {		    E Tez, TeC, ThF, ThG;		    Tez = Ten - Teq;		    TeC = TeA - TeB;		    ri[WS(ios, 54)] = Tez - TeC;		    ri[WS(ios, 22)] = Tez + TeC;		    ThF = Tex - Teu;		    ThG = ThD - ThA;		    ii[WS(ios, 22)] = ThF + ThG;		    ii[WS(ios, 54)] = ThG - ThF;	       }	  }	  {	       E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;	       E Tfg;	       {		    E TeD, TeG, Tfa, Tfb;		    TeD = TcL + TcO;		    TeG = KP707106781 * (TeE + TeF);		    TeH = TeD - TeG;		    Tf9 = TeD + TeG;		    {			 E TeK, TeN, Thl, Tho;			 TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI);			 TeN = FMA(KP923879532, TeL, KP382683432 * TeM);			 TeO = TeK - TeN;			 Thk = TeK + TeN;			 Thl = KP707106781 * (TcU + TcZ);			 Tho = Thm + Thn;			 Thp = Thl + Tho;			 Thv = Tho - Thl;		    }		    Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ);		    Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM);		    Tfc = Tfa + Tfb;		    Thu = Tfb - Tfa;		    {			 E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;			 TeY = KP707106781 * (Tee + Ted);			 TeZ = TeX - TeY;			 Tfh = TeX + TeY;			 Tf1 = KP707106781 * (Te0 + Te5);			 Tf2 = Tf0 - Tf1;			 Tfi = Tf0 + Tf1;			 Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ);			 Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi);			 Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2);			 Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh);		    }		    {			 E TeS, Tfe, TeV, Tff, TeR, TeU;			 TeR = KP707106781 * (TdE + Tdz);			 TeS = TeQ - TeR;			 Tfe = TeQ + TeR;			 TeU = KP707106781 * (TdM + TdN);			 TeV = TeT - TeU;			 Tff = TeT + TeU;			 TeW = FMA(KP555570233, TeS, KP831469612 * TeV);			 Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff);			 Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV);			 Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff);		    }	       }	       {		    E TeP, Tf4, Tht, Thw;		    TeP = TeH + TeO;		    Tf4 = TeW + Tf3;		    ri[WS(ios, 42)] = TeP - Tf4;		    ri[WS(ios, 10)] = TeP + Tf4;		    Tht = Tf6 + Tf7;		    Thw = Thu + Thv;		    ii[WS(ios, 10)] = Tht + Thw;		    ii[WS(ios, 42)] = Thw - Tht;	       }	       {		    E Tf5, Tf8, Thx, Thy;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -