⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_64.c

📁 fftw-3.0.1
💻 C
📖 第 1 页 / 共 4 页
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:30:08 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 64 -name t1_64 -include t.h *//* * This function contains 1038 FP additions, 500 FP multiplications, * (or, 808 additions, 270 multiplications, 230 fused multiply/add), * 176 stack variables, and 256 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twiddle.ml,v 1.16 2003/04/16 19:51:27 athena Exp $ */#include "t.h"static const R *t1_64(R *ri, R *ii, const R *W, stride ios, int m, int dist){     DK(KP471396736, +0.471396736825997648556387625905254377657460319);     DK(KP881921264, +0.881921264348355029712756863660388349508442621);     DK(KP290284677, +0.290284677254462367636192375817395274691476278);     DK(KP956940335, +0.956940335732208864935797886980269969482849206);     DK(KP634393284, +0.634393284163645498215171613225493370675687095);     DK(KP773010453, +0.773010453362736960810906609758469800971041293);     DK(KP098017140, +0.098017140329560601994195563888641845861136673);     DK(KP995184726, +0.995184726672196886244836953109479921575474869);     DK(KP555570233, +0.555570233019602224742830813948532874374937191);     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP195090322, +0.195090322016128267848284868477022240927691618);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     int i;     for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 126) {	  E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC;	  E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1;	  E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a;	  E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM;	  E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D;	  E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt;	  E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO;	  E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted;	  E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA;	  {	       E T1, TgR, T6, TgQ, Tc, T68, Th, T69;	       T1 = ri[0];	       TgR = ii[0];	       {		    E T3, T5, T2, T4;		    T3 = ri[WS(ios, 32)];		    T5 = ii[WS(ios, 32)];		    T2 = W[62];		    T4 = W[63];		    T6 = FMA(T2, T3, T4 * T5);		    TgQ = FNMS(T4, T3, T2 * T5);	       }	       {		    E T9, Tb, T8, Ta;		    T9 = ri[WS(ios, 16)];		    Tb = ii[WS(ios, 16)];		    T8 = W[30];		    Ta = W[31];		    Tc = FMA(T8, T9, Ta * Tb);		    T68 = FNMS(Ta, T9, T8 * Tb);	       }	       {		    E Te, Tg, Td, Tf;		    Te = ri[WS(ios, 48)];		    Tg = ii[WS(ios, 48)];		    Td = W[94];		    Tf = W[95];		    Th = FMA(Td, Te, Tf * Tg);		    T69 = FNMS(Tf, Te, Td * Tg);	       }	       {		    E T7, Ti, ThR, ThS;		    T7 = T1 + T6;		    Ti = Tc + Th;		    Tj = T7 + Ti;		    TcL = T7 - Ti;		    ThR = TgR - TgQ;		    ThS = Tc - Th;		    ThT = ThR - ThS;		    Tin = ThS + ThR;	       }	       {		    E T67, T6a, TgP, TgS;		    T67 = T1 - T6;		    T6a = T68 - T69;		    T6b = T67 - T6a;		    Taz = T67 + T6a;		    TgP = T68 + T69;		    TgS = TgQ + TgR;		    TgT = TgP + TgS;		    Thn = TgS - TgP;	       }	  }	  {	       E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k;	       {		    E Tl, Tn, Tk, Tm;		    Tl = ri[WS(ios, 8)];		    Tn = ii[WS(ios, 8)];		    Tk = W[14];		    Tm = W[15];		    To = FMA(Tk, Tl, Tm * Tn);		    T6c = FNMS(Tm, Tl, Tk * Tn);	       }	       {		    E Tq, Ts, Tp, Tr;		    Tq = ri[WS(ios, 40)];		    Ts = ii[WS(ios, 40)];		    Tp = W[78];		    Tr = W[79];		    Tt = FMA(Tp, Tq, Tr * Ts);		    T6d = FNMS(Tr, Tq, Tp * Ts);	       }	       T6e = T6c - T6d;	       T6f = To - Tt;	       {		    E Tw, Ty, Tv, Tx;		    Tw = ri[WS(ios, 56)];		    Ty = ii[WS(ios, 56)];		    Tv = W[110];		    Tx = W[111];		    Tz = FMA(Tv, Tw, Tx * Ty);		    T6i = FNMS(Tx, Tw, Tv * Ty);	       }	       {		    E TB, TD, TA, TC;		    TB = ri[WS(ios, 24)];		    TD = ii[WS(ios, 24)];		    TA = W[46];		    TC = W[47];		    TE = FMA(TA, TB, TC * TD);		    T6j = FNMS(TC, TB, TA * TD);	       }	       T6h = Tz - TE;	       T6k = T6i - T6j;	       {		    E Tu, TF, TcM, TcN;		    Tu = To + Tt;		    TF = Tz + TE;		    TG = Tu + TF;		    Thm = TF - Tu;		    TcM = T6c + T6d;		    TcN = T6i + T6j;		    TcO = TcM - TcN;		    TgO = TcM + TcN;	       }	       {		    E T6g, T6l, TaA, TaB;		    T6g = T6e - T6f;		    T6l = T6h + T6k;		    T6m = KP707106781 * (T6g - T6l);		    ThQ = KP707106781 * (T6g + T6l);		    TaA = T6f + T6e;		    TaB = T6h - T6k;		    TaC = KP707106781 * (TaA + TaB);		    Tim = KP707106781 * (TaB - TaA);	       }	  }	  {	       E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x;	       {		    E TM, T6o, TR, T6p;		    {			 E TJ, TL, TI, TK;			 TJ = ri[WS(ios, 4)];			 TL = ii[WS(ios, 4)];			 TI = W[6];			 TK = W[7];			 TM = FMA(TI, TJ, TK * TL);			 T6o = FNMS(TK, TJ, TI * TL);		    }		    {			 E TO, TQ, TN, TP;			 TO = ri[WS(ios, 36)];			 TQ = ii[WS(ios, 36)];			 TN = W[70];			 TP = W[71];			 TR = FMA(TN, TO, TP * TQ);			 T6p = FNMS(TP, TO, TN * TQ);		    }		    TS = TM + TR;		    TcQ = T6o + T6p;		    T6q = T6o - T6p;		    T6t = TM - TR;	       }	       {		    E TX, T6u, T12, T6v;		    {			 E TU, TW, TT, TV;			 TU = ri[WS(ios, 20)];			 TW = ii[WS(ios, 20)];			 TT = W[38];			 TV = W[39];			 TX = FMA(TT, TU, TV * TW);			 T6u = FNMS(TV, TU, TT * TW);		    }		    {			 E TZ, T11, TY, T10;			 TZ = ri[WS(ios, 52)];			 T11 = ii[WS(ios, 52)];			 TY = W[102];			 T10 = W[103];			 T12 = FMA(TY, TZ, T10 * T11);			 T6v = FNMS(T10, TZ, TY * T11);		    }		    T13 = TX + T12;		    TcR = T6u + T6v;		    T6r = TX - T12;		    T6w = T6u - T6v;	       }	       T14 = TS + T13;	       Tfq = TcQ + TcR;	       T6s = T6q + T6r;	       T6x = T6t - T6w;	       T6y = FNMS(KP923879532, T6x, KP382683432 * T6s);	       T9O = FMA(KP923879532, T6s, KP382683432 * T6x);	       {		    E TaE, TaF, TcS, TcT;		    TaE = T6q - T6r;		    TaF = T6t + T6w;		    TaG = FNMS(KP382683432, TaF, KP923879532 * TaE);		    Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF);		    TcS = TcQ - TcR;		    TcT = TS - T13;		    TcU = TcS - TcT;		    TeE = TcT + TcS;	       }	  }	  {	       E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;	       {		    E T19, T6z, T1e, T6A;		    {			 E T16, T18, T15, T17;			 T16 = ri[WS(ios, 60)];			 T18 = ii[WS(ios, 60)];			 T15 = W[118];			 T17 = W[119];			 T19 = FMA(T15, T16, T17 * T18);			 T6z = FNMS(T17, T16, T15 * T18);		    }		    {			 E T1b, T1d, T1a, T1c;			 T1b = ri[WS(ios, 28)];			 T1d = ii[WS(ios, 28)];			 T1a = W[54];			 T1c = W[55];			 T1e = FMA(T1a, T1b, T1c * T1d);			 T6A = FNMS(T1c, T1b, T1a * T1d);		    }		    T1f = T19 + T1e;		    TcW = T6z + T6A;		    T6B = T6z - T6A;		    T6E = T19 - T1e;	       }	       {		    E T1k, T6F, T1p, T6G;		    {			 E T1h, T1j, T1g, T1i;			 T1h = ri[WS(ios, 12)];			 T1j = ii[WS(ios, 12)];			 T1g = W[22];			 T1i = W[23];			 T1k = FMA(T1g, T1h, T1i * T1j);			 T6F = FNMS(T1i, T1h, T1g * T1j);		    }		    {			 E T1m, T1o, T1l, T1n;			 T1m = ri[WS(ios, 44)];			 T1o = ii[WS(ios, 44)];			 T1l = W[86];			 T1n = W[87];			 T1p = FMA(T1l, T1m, T1n * T1o);			 T6G = FNMS(T1n, T1m, T1l * T1o);		    }		    T1q = T1k + T1p;		    TcX = T6F + T6G;		    T6C = T1k - T1p;		    T6H = T6F - T6G;	       }	       T1r = T1f + T1q;	       Tfr = TcW + TcX;	       T6D = T6B + T6C;	       T6I = T6E - T6H;	       T6J = FMA(KP382683432, T6D, KP923879532 * T6I);	       T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);	       {		    E TaH, TaI, TcV, TcY;		    TaH = T6B - T6C;		    TaI = T6E + T6H;		    TaJ = FMA(KP923879532, TaH, KP382683432 * TaI);		    Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI);		    TcV = T1f - T1q;		    TcY = TcW - TcX;		    TcZ = TcV + TcY;		    TeF = TcV - TcY;	       }	  }	  {	       E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W;	       E T6Z, T2c, Td9, T6R, T6U;	       {		    E T1v, T1x, T1u, T1w;		    T1v = ri[WS(ios, 2)];		    T1x = ii[WS(ios, 2)];		    T1u = W[2];		    T1w = W[3];		    T1y = FMA(T1u, T1v, T1w * T1x);		    T6M = FNMS(T1w, T1v, T1u * T1x);	       }	       {		    E T1A, T1C, T1z, T1B;		    T1A = ri[WS(ios, 34)];		    T1C = ii[WS(ios, 34)];		    T1z = W[66];		    T1B = W[67];		    T1D = FMA(T1z, T1A, T1B * T1C);		    T6N = FNMS(T1B, T1A, T1z * T1C);	       }	       T1E = T1y + T1D;	       Td2 = T6M + T6N;	       {		    E T1G, T1I, T1F, T1H;		    T1G = ri[WS(ios, 18)];		    T1I = ii[WS(ios, 18)];		    T1F = W[34];		    T1H = W[35];		    T1J = FMA(T1F, T1G, T1H * T1I);		    T74 = FNMS(T1H, T1G, T1F * T1I);	       }	       {		    E T1L, T1N, T1K, T1M;		    T1L = ri[WS(ios, 50)];		    T1N = ii[WS(ios, 50)];		    T1K = W[98];		    T1M = W[99];		    T1O = FMA(T1K, T1L, T1M * T1N);		    T75 = FNMS(T1M, T1L, T1K * T1N);	       }	       T1P = T1J + T1O;	       Td3 = T74 + T75;	       {		    E T1V, T6X, T20, T6Y;		    {			 E T1S, T1U, T1R, T1T;			 T1S = ri[WS(ios, 10)];			 T1U = ii[WS(ios, 10)];			 T1R = W[18];			 T1T = W[19];			 T1V = FMA(T1R, T1S, T1T * T1U);			 T6X = FNMS(T1T, T1S, T1R * T1U);		    }		    {			 E T1X, T1Z, T1W, T1Y;			 T1X = ri[WS(ios, 42)];			 T1Z = ii[WS(ios, 42)];			 T1W = W[82];			 T1Y = W[83];			 T20 = FMA(T1W, T1X, T1Y * T1Z);			 T6Y = FNMS(T1Y, T1X, T1W * T1Z);		    }		    T21 = T1V + T20;		    Td8 = T6X + T6Y;		    T6W = T1V - T20;		    T6Z = T6X - T6Y;	       }	       {		    E T26, T6S, T2b, T6T;		    {			 E T23, T25, T22, T24;			 T23 = ri[WS(ios, 58)];			 T25 = ii[WS(ios, 58)];			 T22 = W[114];			 T24 = W[115];			 T26 = FMA(T22, T23, T24 * T25);			 T6S = FNMS(T24, T23, T22 * T25);		    }		    {			 E T28, T2a, T27, T29;			 T28 = ri[WS(ios, 26)];			 T2a = ii[WS(ios, 26)];			 T27 = W[50];			 T29 = W[51];			 T2b = FMA(T27, T28, T29 * T2a);			 T6T = FNMS(T29, T28, T27 * T2a);		    }		    T2c = T26 + T2b;		    Td9 = T6S + T6T;		    T6R = T26 - T2b;		    T6U = T6S - T6T;	       }	       T1Q = T1E + T1P;	       T2d = T21 + T2c;	       Tfx = T1Q - T2d;	       Tfu = Td2 + Td3;	       Tfv = Td8 + Td9;	       Tfw = Tfu - Tfv;	       {		    E T6O, T6P, Td7, Tda;		    T6O = T6M - T6N;		    T6P = T1J - T1O;		    T6Q = T6O + T6P;		    TaM = T6O - T6P;		    Td7 = T1E - T1P;		    Tda = Td8 - Td9;		    Tdb = Td7 - Tda;		    TeJ = Td7 + Tda;	       }	       {		    E T6V, T70, T78, T79;		    T6V = T6R - T6U;		    T70 = T6W + T6Z;		    T71 = KP707106781 * (T6V - T70);		    TaQ = KP707106781 * (T70 + T6V);		    T78 = T6Z - T6W;		    T79 = T6R + T6U;		    T7a = KP707106781 * (T78 - T79);		    TaN = KP707106781 * (T78 + T79);	       }	       {		    E Td4, Td5, T73, T76;		    Td4 = Td2 - Td3;		    Td5 = T2c - T21;		    Td6 = Td4 - Td5;		    TeI = Td4 + Td5;		    T73 = T1y - T1D;		    T76 = T74 - T75;		    T77 = T73 - T76;		    TaP = T73 + T76;	       }	  }	  {	       E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n;	       E T7q, T2X, Tdk, T7i, T7l;	       {		    E T2g, T2i, T2f, T2h;		    T2g = ri[WS(ios, 62)];		    T2i = ii[WS(ios, 62)];		    T2f = W[122];		    T2h = W[123];		    T2j = FMA(T2f, T2g, T2h * T2i);		    T7d = FNMS(T2h, T2g, T2f * T2i);	       }	       {		    E T2l, T2n, T2k, T2m;		    T2l = ri[WS(ios, 30)];		    T2n = ii[WS(ios, 30)];		    T2k = W[58];		    T2m = W[59];		    T2o = FMA(T2k, T2l, T2m * T2n);		    T7e = FNMS(T2m, T2l, T2k * T2n);	       }	       T2p = T2j + T2o;	       Tdd = T7d + T7e;	       {		    E T2r, T2t, T2q, T2s;		    T2r = ri[WS(ios, 14)];		    T2t = ii[WS(ios, 14)];		    T2q = W[26];		    T2s = W[27];		    T2u = FMA(T2q, T2r, T2s * T2t);		    T7v = FNMS(T2s, T2r, T2q * T2t);	       }	       {		    E T2w, T2y, T2v, T2x;		    T2w = ri[WS(ios, 46)];		    T2y = ii[WS(ios, 46)];		    T2v = W[90];		    T2x = W[91];		    T2z = FMA(T2v, T2w, T2x * T2y);		    T7w = FNMS(T2x, T2w, T2v * T2y);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -