📄 t1_64.c
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul 5 21:30:08 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twiddle -compact -variables 4 -n 64 -name t1_64 -include t.h *//* * This function contains 1038 FP additions, 500 FP multiplications, * (or, 808 additions, 270 multiplications, 230 fused multiply/add), * 176 stack variables, and 256 memory accesses *//* * Generator Id's : * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twiddle.ml,v 1.16 2003/04/16 19:51:27 athena Exp $ */#include "t.h"static const R *t1_64(R *ri, R *ii, const R *W, stride ios, int m, int dist){ DK(KP471396736, +0.471396736825997648556387625905254377657460319); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP290284677, +0.290284677254462367636192375817395274691476278); DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP634393284, +0.634393284163645498215171613225493370675687095); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP098017140, +0.098017140329560601994195563888641845861136673); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP707106781, +0.707106781186547524400844362104849039284835938); int i; for (i = m; i > 0; i = i - 1, ri = ri + dist, ii = ii + dist, W = W + 126) { E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D; E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt; E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO; E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted; E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA; { E T1, TgR, T6, TgQ, Tc, T68, Th, T69; T1 = ri[0]; TgR = ii[0]; { E T3, T5, T2, T4; T3 = ri[WS(ios, 32)]; T5 = ii[WS(ios, 32)]; T2 = W[62]; T4 = W[63]; T6 = FMA(T2, T3, T4 * T5); TgQ = FNMS(T4, T3, T2 * T5); } { E T9, Tb, T8, Ta; T9 = ri[WS(ios, 16)]; Tb = ii[WS(ios, 16)]; T8 = W[30]; Ta = W[31]; Tc = FMA(T8, T9, Ta * Tb); T68 = FNMS(Ta, T9, T8 * Tb); } { E Te, Tg, Td, Tf; Te = ri[WS(ios, 48)]; Tg = ii[WS(ios, 48)]; Td = W[94]; Tf = W[95]; Th = FMA(Td, Te, Tf * Tg); T69 = FNMS(Tf, Te, Td * Tg); } { E T7, Ti, ThR, ThS; T7 = T1 + T6; Ti = Tc + Th; Tj = T7 + Ti; TcL = T7 - Ti; ThR = TgR - TgQ; ThS = Tc - Th; ThT = ThR - ThS; Tin = ThS + ThR; } { E T67, T6a, TgP, TgS; T67 = T1 - T6; T6a = T68 - T69; T6b = T67 - T6a; Taz = T67 + T6a; TgP = T68 + T69; TgS = TgQ + TgR; TgT = TgP + TgS; Thn = TgS - TgP; } } { E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; { E Tl, Tn, Tk, Tm; Tl = ri[WS(ios, 8)]; Tn = ii[WS(ios, 8)]; Tk = W[14]; Tm = W[15]; To = FMA(Tk, Tl, Tm * Tn); T6c = FNMS(Tm, Tl, Tk * Tn); } { E Tq, Ts, Tp, Tr; Tq = ri[WS(ios, 40)]; Ts = ii[WS(ios, 40)]; Tp = W[78]; Tr = W[79]; Tt = FMA(Tp, Tq, Tr * Ts); T6d = FNMS(Tr, Tq, Tp * Ts); } T6e = T6c - T6d; T6f = To - Tt; { E Tw, Ty, Tv, Tx; Tw = ri[WS(ios, 56)]; Ty = ii[WS(ios, 56)]; Tv = W[110]; Tx = W[111]; Tz = FMA(Tv, Tw, Tx * Ty); T6i = FNMS(Tx, Tw, Tv * Ty); } { E TB, TD, TA, TC; TB = ri[WS(ios, 24)]; TD = ii[WS(ios, 24)]; TA = W[46]; TC = W[47]; TE = FMA(TA, TB, TC * TD); T6j = FNMS(TC, TB, TA * TD); } T6h = Tz - TE; T6k = T6i - T6j; { E Tu, TF, TcM, TcN; Tu = To + Tt; TF = Tz + TE; TG = Tu + TF; Thm = TF - Tu; TcM = T6c + T6d; TcN = T6i + T6j; TcO = TcM - TcN; TgO = TcM + TcN; } { E T6g, T6l, TaA, TaB; T6g = T6e - T6f; T6l = T6h + T6k; T6m = KP707106781 * (T6g - T6l); ThQ = KP707106781 * (T6g + T6l); TaA = T6f + T6e; TaB = T6h - T6k; TaC = KP707106781 * (TaA + TaB); Tim = KP707106781 * (TaB - TaA); } } { E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; { E TM, T6o, TR, T6p; { E TJ, TL, TI, TK; TJ = ri[WS(ios, 4)]; TL = ii[WS(ios, 4)]; TI = W[6]; TK = W[7]; TM = FMA(TI, TJ, TK * TL); T6o = FNMS(TK, TJ, TI * TL); } { E TO, TQ, TN, TP; TO = ri[WS(ios, 36)]; TQ = ii[WS(ios, 36)]; TN = W[70]; TP = W[71]; TR = FMA(TN, TO, TP * TQ); T6p = FNMS(TP, TO, TN * TQ); } TS = TM + TR; TcQ = T6o + T6p; T6q = T6o - T6p; T6t = TM - TR; } { E TX, T6u, T12, T6v; { E TU, TW, TT, TV; TU = ri[WS(ios, 20)]; TW = ii[WS(ios, 20)]; TT = W[38]; TV = W[39]; TX = FMA(TT, TU, TV * TW); T6u = FNMS(TV, TU, TT * TW); } { E TZ, T11, TY, T10; TZ = ri[WS(ios, 52)]; T11 = ii[WS(ios, 52)]; TY = W[102]; T10 = W[103]; T12 = FMA(TY, TZ, T10 * T11); T6v = FNMS(T10, TZ, TY * T11); } T13 = TX + T12; TcR = T6u + T6v; T6r = TX - T12; T6w = T6u - T6v; } T14 = TS + T13; Tfq = TcQ + TcR; T6s = T6q + T6r; T6x = T6t - T6w; T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); T9O = FMA(KP923879532, T6s, KP382683432 * T6x); { E TaE, TaF, TcS, TcT; TaE = T6q - T6r; TaF = T6t + T6w; TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); TcS = TcQ - TcR; TcT = TS - T13; TcU = TcS - TcT; TeE = TcT + TcS; } } { E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; { E T19, T6z, T1e, T6A; { E T16, T18, T15, T17; T16 = ri[WS(ios, 60)]; T18 = ii[WS(ios, 60)]; T15 = W[118]; T17 = W[119]; T19 = FMA(T15, T16, T17 * T18); T6z = FNMS(T17, T16, T15 * T18); } { E T1b, T1d, T1a, T1c; T1b = ri[WS(ios, 28)]; T1d = ii[WS(ios, 28)]; T1a = W[54]; T1c = W[55]; T1e = FMA(T1a, T1b, T1c * T1d); T6A = FNMS(T1c, T1b, T1a * T1d); } T1f = T19 + T1e; TcW = T6z + T6A; T6B = T6z - T6A; T6E = T19 - T1e; } { E T1k, T6F, T1p, T6G; { E T1h, T1j, T1g, T1i; T1h = ri[WS(ios, 12)]; T1j = ii[WS(ios, 12)]; T1g = W[22]; T1i = W[23]; T1k = FMA(T1g, T1h, T1i * T1j); T6F = FNMS(T1i, T1h, T1g * T1j); } { E T1m, T1o, T1l, T1n; T1m = ri[WS(ios, 44)]; T1o = ii[WS(ios, 44)]; T1l = W[86]; T1n = W[87]; T1p = FMA(T1l, T1m, T1n * T1o); T6G = FNMS(T1n, T1m, T1l * T1o); } T1q = T1k + T1p; TcX = T6F + T6G; T6C = T1k - T1p; T6H = T6F - T6G; } T1r = T1f + T1q; Tfr = TcW + TcX; T6D = T6B + T6C; T6I = T6E - T6H; T6J = FMA(KP382683432, T6D, KP923879532 * T6I); T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); { E TaH, TaI, TcV, TcY; TaH = T6B - T6C; TaI = T6E + T6H; TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); TcV = T1f - T1q; TcY = TcW - TcX; TcZ = TcV + TcY; TeF = TcV - TcY; } } { E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; E T6Z, T2c, Td9, T6R, T6U; { E T1v, T1x, T1u, T1w; T1v = ri[WS(ios, 2)]; T1x = ii[WS(ios, 2)]; T1u = W[2]; T1w = W[3]; T1y = FMA(T1u, T1v, T1w * T1x); T6M = FNMS(T1w, T1v, T1u * T1x); } { E T1A, T1C, T1z, T1B; T1A = ri[WS(ios, 34)]; T1C = ii[WS(ios, 34)]; T1z = W[66]; T1B = W[67]; T1D = FMA(T1z, T1A, T1B * T1C); T6N = FNMS(T1B, T1A, T1z * T1C); } T1E = T1y + T1D; Td2 = T6M + T6N; { E T1G, T1I, T1F, T1H; T1G = ri[WS(ios, 18)]; T1I = ii[WS(ios, 18)]; T1F = W[34]; T1H = W[35]; T1J = FMA(T1F, T1G, T1H * T1I); T74 = FNMS(T1H, T1G, T1F * T1I); } { E T1L, T1N, T1K, T1M; T1L = ri[WS(ios, 50)]; T1N = ii[WS(ios, 50)]; T1K = W[98]; T1M = W[99]; T1O = FMA(T1K, T1L, T1M * T1N); T75 = FNMS(T1M, T1L, T1K * T1N); } T1P = T1J + T1O; Td3 = T74 + T75; { E T1V, T6X, T20, T6Y; { E T1S, T1U, T1R, T1T; T1S = ri[WS(ios, 10)]; T1U = ii[WS(ios, 10)]; T1R = W[18]; T1T = W[19]; T1V = FMA(T1R, T1S, T1T * T1U); T6X = FNMS(T1T, T1S, T1R * T1U); } { E T1X, T1Z, T1W, T1Y; T1X = ri[WS(ios, 42)]; T1Z = ii[WS(ios, 42)]; T1W = W[82]; T1Y = W[83]; T20 = FMA(T1W, T1X, T1Y * T1Z); T6Y = FNMS(T1Y, T1X, T1W * T1Z); } T21 = T1V + T20; Td8 = T6X + T6Y; T6W = T1V - T20; T6Z = T6X - T6Y; } { E T26, T6S, T2b, T6T; { E T23, T25, T22, T24; T23 = ri[WS(ios, 58)]; T25 = ii[WS(ios, 58)]; T22 = W[114]; T24 = W[115]; T26 = FMA(T22, T23, T24 * T25); T6S = FNMS(T24, T23, T22 * T25); } { E T28, T2a, T27, T29; T28 = ri[WS(ios, 26)]; T2a = ii[WS(ios, 26)]; T27 = W[50]; T29 = W[51]; T2b = FMA(T27, T28, T29 * T2a); T6T = FNMS(T29, T28, T27 * T2a); } T2c = T26 + T2b; Td9 = T6S + T6T; T6R = T26 - T2b; T6U = T6S - T6T; } T1Q = T1E + T1P; T2d = T21 + T2c; Tfx = T1Q - T2d; Tfu = Td2 + Td3; Tfv = Td8 + Td9; Tfw = Tfu - Tfv; { E T6O, T6P, Td7, Tda; T6O = T6M - T6N; T6P = T1J - T1O; T6Q = T6O + T6P; TaM = T6O - T6P; Td7 = T1E - T1P; Tda = Td8 - Td9; Tdb = Td7 - Tda; TeJ = Td7 + Tda; } { E T6V, T70, T78, T79; T6V = T6R - T6U; T70 = T6W + T6Z; T71 = KP707106781 * (T6V - T70); TaQ = KP707106781 * (T70 + T6V); T78 = T6Z - T6W; T79 = T6R + T6U; T7a = KP707106781 * (T78 - T79); TaN = KP707106781 * (T78 + T79); } { E Td4, Td5, T73, T76; Td4 = Td2 - Td3; Td5 = T2c - T21; Td6 = Td4 - Td5; TeI = Td4 + Td5; T73 = T1y - T1D; T76 = T74 - T75; T77 = T73 - T76; TaP = T73 + T76; } } { E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; E T7q, T2X, Tdk, T7i, T7l; { E T2g, T2i, T2f, T2h; T2g = ri[WS(ios, 62)]; T2i = ii[WS(ios, 62)]; T2f = W[122]; T2h = W[123]; T2j = FMA(T2f, T2g, T2h * T2i); T7d = FNMS(T2h, T2g, T2f * T2i); } { E T2l, T2n, T2k, T2m; T2l = ri[WS(ios, 30)]; T2n = ii[WS(ios, 30)]; T2k = W[58]; T2m = W[59]; T2o = FMA(T2k, T2l, T2m * T2n); T7e = FNMS(T2m, T2l, T2k * T2n); } T2p = T2j + T2o; Tdd = T7d + T7e; { E T2r, T2t, T2q, T2s; T2r = ri[WS(ios, 14)]; T2t = ii[WS(ios, 14)]; T2q = W[26]; T2s = W[27]; T2u = FMA(T2q, T2r, T2s * T2t); T7v = FNMS(T2s, T2r, T2q * T2t); } { E T2w, T2y, T2v, T2x; T2w = ri[WS(ios, 46)]; T2y = ii[WS(ios, 46)]; T2v = W[90]; T2x = W[91]; T2z = FMA(T2v, T2w, T2x * T2y); T7w = FNMS(T2x, T2w, T2v * T2y);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -