⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 n1_12.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:29:32 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_notw -compact -variables 4 -n 12 -name n1_12 -include n.h *//* * This function contains 96 FP additions, 16 FP multiplications, * (or, 88 additions, 8 multiplications, 8 fused multiply/add), * 43 stack variables, and 48 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_notw.ml,v 1.22 2003/04/17 11:07:19 athena Exp $ */#include "n.h"static void n1_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, int v, int ivs, int ovs){     DK(KP866025403, +0.866025403784438646763723170752936183471402627);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     int i;     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs) {	  E T5, TR, TA, Ts, TS, Tz, Ta, TU, TD, Tx, TV, TC, Tg, T1a, TG;	  E TJ, T1u, T1d, Tl, T1f, TL, TO, T1v, T1i;	  {	       E T1, T2, T3, T4;	       T1 = ri[0];	       T2 = ri[WS(is, 4)];	       T3 = ri[WS(is, 8)];	       T4 = T2 + T3;	       T5 = T1 + T4;	       TR = FNMS(KP500000000, T4, T1);	       TA = KP866025403 * (T3 - T2);	  }	  {	       E To, Tp, Tq, Tr;	       To = ii[0];	       Tp = ii[WS(is, 4)];	       Tq = ii[WS(is, 8)];	       Tr = Tp + Tq;	       Ts = To + Tr;	       TS = KP866025403 * (Tp - Tq);	       Tz = FNMS(KP500000000, Tr, To);	  }	  {	       E T6, T7, T8, T9;	       T6 = ri[WS(is, 6)];	       T7 = ri[WS(is, 10)];	       T8 = ri[WS(is, 2)];	       T9 = T7 + T8;	       Ta = T6 + T9;	       TU = FNMS(KP500000000, T9, T6);	       TD = KP866025403 * (T8 - T7);	  }	  {	       E Tt, Tu, Tv, Tw;	       Tt = ii[WS(is, 6)];	       Tu = ii[WS(is, 10)];	       Tv = ii[WS(is, 2)];	       Tw = Tu + Tv;	       Tx = Tt + Tw;	       TV = KP866025403 * (Tu - Tv);	       TC = FNMS(KP500000000, Tw, Tt);	  }	  {	       E Tc, Td, Te, Tf;	       Tc = ri[WS(is, 3)];	       Td = ri[WS(is, 7)];	       Te = ri[WS(is, 11)];	       Tf = Td + Te;	       Tg = Tc + Tf;	       T1a = KP866025403 * (Te - Td);	       TG = FNMS(KP500000000, Tf, Tc);	  }	  {	       E T1b, TH, TI, T1c;	       T1b = ii[WS(is, 3)];	       TH = ii[WS(is, 7)];	       TI = ii[WS(is, 11)];	       T1c = TH + TI;	       TJ = KP866025403 * (TH - TI);	       T1u = T1b + T1c;	       T1d = FNMS(KP500000000, T1c, T1b);	  }	  {	       E Th, Ti, Tj, Tk;	       Th = ri[WS(is, 9)];	       Ti = ri[WS(is, 1)];	       Tj = ri[WS(is, 5)];	       Tk = Ti + Tj;	       Tl = Th + Tk;	       T1f = KP866025403 * (Tj - Ti);	       TL = FNMS(KP500000000, Tk, Th);	  }	  {	       E T1g, TM, TN, T1h;	       T1g = ii[WS(is, 9)];	       TM = ii[WS(is, 1)];	       TN = ii[WS(is, 5)];	       T1h = TM + TN;	       TO = KP866025403 * (TM - TN);	       T1v = T1g + T1h;	       T1i = FNMS(KP500000000, T1h, T1g);	  }	  {	       E Tb, Tm, T1t, T1w;	       Tb = T5 + Ta;	       Tm = Tg + Tl;	       ro[WS(os, 6)] = Tb - Tm;	       ro[0] = Tb + Tm;	       {		    E T1x, T1y, Tn, Ty;		    T1x = Ts + Tx;		    T1y = T1u + T1v;		    io[WS(os, 6)] = T1x - T1y;		    io[0] = T1x + T1y;		    Tn = Tg - Tl;		    Ty = Ts - Tx;		    io[WS(os, 3)] = Tn + Ty;		    io[WS(os, 9)] = Ty - Tn;	       }	       T1t = T5 - Ta;	       T1w = T1u - T1v;	       ro[WS(os, 3)] = T1t - T1w;	       ro[WS(os, 9)] = T1t + T1w;	       {		    E T11, T1l, T1k, T1m, T14, T18, T17, T19;		    {			 E TZ, T10, T1e, T1j;			 TZ = TA + Tz;			 T10 = TD + TC;			 T11 = TZ - T10;			 T1l = TZ + T10;			 T1e = T1a + T1d;			 T1j = T1f + T1i;			 T1k = T1e - T1j;			 T1m = T1e + T1j;		    }		    {			 E T12, T13, T15, T16;			 T12 = TG + TJ;			 T13 = TL + TO;			 T14 = T12 - T13;			 T18 = T12 + T13;			 T15 = TR + TS;			 T16 = TU + TV;			 T17 = T15 + T16;			 T19 = T15 - T16;		    }		    io[WS(os, 1)] = T11 - T14;		    ro[WS(os, 1)] = T19 + T1k;		    io[WS(os, 7)] = T11 + T14;		    ro[WS(os, 7)] = T19 - T1k;		    ro[WS(os, 10)] = T17 - T18;		    io[WS(os, 10)] = T1l - T1m;		    ro[WS(os, 4)] = T17 + T18;		    io[WS(os, 4)] = T1l + T1m;	       }	       {		    E TF, T1r, T1q, T1s, TQ, TY, TX, T1n;		    {			 E TB, TE, T1o, T1p;			 TB = Tz - TA;			 TE = TC - TD;			 TF = TB - TE;			 T1r = TB + TE;			 T1o = T1d - T1a;			 T1p = T1i - T1f;			 T1q = T1o - T1p;			 T1s = T1o + T1p;		    }		    {			 E TK, TP, TT, TW;			 TK = TG - TJ;			 TP = TL - TO;			 TQ = TK - TP;			 TY = TK + TP;			 TT = TR - TS;			 TW = TU - TV;			 TX = TT + TW;			 T1n = TT - TW;		    }		    io[WS(os, 5)] = TF - TQ;		    ro[WS(os, 5)] = T1n + T1q;		    io[WS(os, 11)] = TF + TQ;		    ro[WS(os, 11)] = T1n - T1q;		    ro[WS(os, 2)] = TX - TY;		    io[WS(os, 2)] = T1r - T1s;		    ro[WS(os, 8)] = TX + TY;		    io[WS(os, 8)] = T1r + T1s;	       }	  }     }}static const kdft_desc desc = { 12, "n1_12", {88, 8, 8, 0}, &GENUS, 0, 0, 0, 0 };void X(codelet_n1_12) (planner *p) {     X(kdft_register) (p, n1_12, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -