⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t2_64.c

📁 fftw-3.0.1
💻 C
📖 第 1 页 / 共 4 页
字号:
		    Ter = Tep - Teq;		    Tew = Tes - Tev;		    Tex = FMA(KP382683432, Ter, KP923879532 * Tew);		    Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew);		    {			 E TfV, TfW, TgJ, TgM;			 TfV = Tep + Teq;			 TfW = Tes + Tev;			 TfX = FMA(KP923879532, TfV, KP382683432 * TfW);			 Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW);			 TgJ = T45 - T4q;			 TgM = TgK - TgL;			 TgN = TgJ + TgM;			 Thj = TgJ - TgM;		    }	       }	       {		    E T80, TbW, T8k, TbX, T8b, Tc0, T8h, TbZ;		    {			 E T7Y, T7Z, T8i, T8j;			 T7Y = T7W - T7X;			 T7Z = T2Z - T34;			 T80 = T7Y + T7Z;			 TbW = T7Y - T7Z;			 T8i = T89 - T86;			 T8j = T81 + T84;			 T8k = KP707106781 * (T8i - T8j);			 TbX = KP707106781 * (T8i + T8j);		    }		    {			 E T85, T8a, T8d, T8g;			 T85 = T81 - T84;			 T8a = T86 + T89;			 T8b = KP707106781 * (T85 - T8a);			 Tc0 = KP707106781 * (T8a + T85);			 T8d = T2O - T2T;			 T8g = T8e - T8f;			 T8h = T8d - T8g;			 TbZ = T8d + T8g;		    }		    {			 E T8c, T8l, Tde, Tdf;			 T8c = T80 - T8b;			 T8l = T8h - T8k;			 T8m = FNMS(KP980785280, T8l, KP195090322 * T8c);			 TaI = FMA(KP980785280, T8c, KP195090322 * T8l);			 Tde = TbW + TbX;			 Tdf = TbZ + Tc0;			 Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde);			 TdG = FMA(KP980785280, Tdf, KP195090322 * Tde);		    }		    {			 E Tb2, Tb3, TbY, Tc1;			 Tb2 = T80 + T8b;			 Tb3 = T8h + T8k;			 Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2);			 Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3);			 TbY = TbW - TbX;			 Tc1 = TbZ - Tc0;			 Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY);			 TcU = FMA(KP555570233, Tc1, KP831469612 * TbY);		    }	       }	       {		    E T36, Teh, Tek, TgF, T3B, Tef, Tee, TgE, Teg, Tel;		    {			 E T2U, T35, Tei, Tej;			 T2U = T2O + T2T;			 T35 = T2Z + T34;			 T36 = T2U + T35;			 Teh = T2U - T35;			 Tei = T87 + T88;			 Tej = T82 + T83;			 Tek = Tei - Tej;			 TgF = Tei + Tej;		    }		    {			 E T3p, T3A, Tec, Ted;			 T3p = T3b + T3o;			 T3A = T3u + T3z;			 T3B = T3p + T3A;			 Tef = T3A - T3p;			 Tec = T7W + T7X;			 Ted = T8e + T8f;			 Tee = Tec - Ted;			 TgE = Tec + Ted;		    }		    T3C = T36 + T3B;		    Thy = TgE + TgF;		    Teg = Tee - Tef;		    Tel = Teh - Tek;		    Tem = FNMS(KP923879532, Tel, KP382683432 * Teg);		    Tfy = FMA(KP923879532, Teg, KP382683432 * Tel);		    {			 E TfS, TfT, TgG, TgH;			 TfS = Tee + Tef;			 TfT = Teh + Tek;			 TfU = FNMS(KP382683432, TfT, KP923879532 * TfS);			 Tgk = FMA(KP382683432, TfS, KP923879532 * TfT);			 TgG = TgE - TgF;			 TgH = T36 - T3B;			 TgI = TgG - TgH;			 Thi = TgH + TgG;		    }	       }	       {		    E T6A, Tfl, Th7, Tf4, T6e, Tar, T9Y, TcH, Tav, Tcw, T9M, Tfj;		    T6A = T6o + T6z;		    Tfl = T6z - T6o;		    Th7 = Tf2 + Tf3;		    Tf4 = Tf2 - Tf3;		    {			 E T6d, T9S, T9X, Tat, Tau, T9L;			 T6d = FNMS(T6b, T6c, T69 * T6a);			 T6e = T68 + T6d;			 Tar = T68 - T6d;			 T9S = T9Q - T9R;			 T9X = T9T + T9W;			 T9Y = KP707106781 * (T9S - T9X);			 TcH = KP707106781 * (T9S + T9X);			 Tat = T9T - T9W;			 Tau = T9R + T9Q;			 Tav = KP707106781 * (Tat - Tau);			 Tcw = KP707106781 * (Tau + Tat);			 T9L = FMA(T6b, T6a, T69 * T6c);			 T9M = T9K - T9L;			 Tfj = T9K + T9L;		    }		    {			 E T6f, Tfk, Th6, T9N;			 T6f = T65 + T6e;			 T6B = T6f + T6A;			 Th1 = T6f - T6A;			 Tfk = Tfi - Tfj;			 Tfm = Tfk - Tfl;			 Tga = Tfk + Tfl;			 Th6 = Tfi + Tfj;			 Th8 = Th6 - Th7;			 ThI = Th6 + Th7;			 T9N = T9J - T9M;			 T9Z = T9N - T9Y;			 Tbh = T9N + T9Y;		    }		    {			 E Tas, TcG, Tf1, Tcv;			 Tas = Taq + Tar;			 Taw = Tas - Tav;			 Tbk = Tas + Tav;			 TcG = Taq - Tar;			 TcI = TcG - TcH;			 Tdw = TcG + TcH;			 Tf1 = T65 - T6e;			 Tf5 = Tf1 - Tf4;			 Tg7 = Tf1 + Tf4;			 Tcv = T9J + T9M;			 Tcx = Tcv - Tcw;			 Tdt = Tcv + Tcw;		    }	       }	       {		    E T8Z, T9B, T5b, TeD, TeU, TgR, T94, T9A, T4L, T8T, T9y, TeB, T4V;		    T8Z = T8V - T8Y;		    T9B = T8V + T8Y;		    T4V = T4P + T4U;		    T5b = T4V + T5a;		    TeD = T5a - T4V;		    {			 E TeS, T90, T93, T4K, T9x;			 TeS = T91 + T92;			 TeU = TeS - TeT;			 TgR = TeS + TeT;			 T90 = T4P - T4U;			 T93 = T91 - T92;			 T94 = T90 + T93;			 T9A = T93 - T90;			 T4K = FMA(T4G, T4H, T4I * T4J);			 T4L = T4F + T4K;			 T8T = T4F - T4K;			 T9x = FNMS(T4I, T4H, T4G * T4J);			 T9y = T9w - T9x;			 TeB = T9w + T9x;		    }		    {			 E T4M, TeR, TgQ, TeC;			 T4M = T4C + T4L;			 T5c = T4M + T5b;			 TgV = T4M - T5b;			 TeR = T4C - T4L;			 TeV = TeR - TeU;			 Tg0 = TeR + TeU;			 TgQ = TeA + TeB;			 TgS = TgQ - TgR;			 ThD = TgQ + TgR;			 TeC = TeA - TeB;			 TeE = TeC - TeD;			 Tg3 = TeC + TeD;		    }		    {			 E T8U, T95, Tcc, Tcd;			 T8U = T8S + T8T;			 T95 = KP707106781 * (T8Z - T94);			 T96 = T8U - T95;			 Tbd = T8U + T95;			 Tcc = T8S - T8T;			 Tcd = KP707106781 * (T9A + T9B);			 Tce = Tcc - Tcd;			 Tdp = Tcc + Tcd;		    }		    {			 E Tcn, Tco, T9z, T9C;			 Tcn = T9v + T9y;			 Tco = KP707106781 * (T94 + T8Z);			 Tcp = Tcn - Tco;			 Tdm = Tcn + Tco;			 T9z = T9v - T9y;			 T9C = KP707106781 * (T9A - T9B);			 T9D = T9z - T9C;			 Tba = T9z + T9C;		    }	       }	       {		    E Tv, T7h, TdY, ThY, Ti2, Tj1, T16, Tj2, T1K, Tiw, T7q, TbK, T7v, TbL, T7k;		    E ThZ, T7r, T7u, T7i;		    {			 E Tu, TdW, TdX, Ti0, TM;			 Tu = FNMS(Ts, Tt, To * Tp);			 Tv = T1 + Tu;			 T7h = T1 - Tu;			 TdW = T7m + T7n;			 TdX = T7s + T7t;			 TdY = TdW - TdX;			 ThY = TdW + TdX;			 Ti0 = FMA(Ts, Tp, To * Tt);			 Ti2 = Ti0 + Ti1;			 Tj1 = Ti1 - Ti0;			 TM = FMA(TG, TH, TK * TL);			 T16 = TM + T15;			 Tj2 = TM - T15;		    }		    {			 E T1s, T1J, T7o, T7p;			 T1s = T1g + T1r;			 T1J = T1z + T1I;			 T1K = T1s + T1J;			 Tiw = T1J - T1s;			 T7o = T7m - T7n;			 T7p = T1g - T1r;			 T7q = T7o - T7p;			 TbK = T7p + T7o;		    }		    T7r = T1z - T1I;		    T7u = T7s - T7t;		    T7v = T7r + T7u;		    TbL = T7r - T7u;		    T7i = FNMS(TK, TH, TG * TL);		    T7k = T7i - T7j;		    ThZ = T7i + T7j;		    {			 E T17, Ti3, Tix, TdV;			 T17 = Tv + T16;			 T1L = T17 + T1K;			 Tgz = T17 - T1K;			 Ti3 = ThZ + Ti2;			 Ti4 = ThY + Ti3;			 Tii = Ti3 - ThY;			 Tix = Ti2 - ThZ;			 Tiy = Tiw + Tix;			 TiM = Tix - Tiw;			 TdV = Tv - T16;			 TdZ = TdV - TdY;			 TfN = TdV + TdY;		    }		    {			 E T7l, T7w, Tj0, Tj3;			 T7l = T7h - T7k;			 T7w = KP707106781 * (T7q - T7v);			 T7x = T7l - T7w;			 TaX = T7l + T7w;			 Tj0 = KP707106781 * (T7q + T7v);			 Tj3 = Tj1 - Tj2;			 Tj4 = Tj0 + Tj3;			 Tji = Tj3 - Tj0;		    }		    {			 E Tjw, Tjx, TbJ, TbM;			 Tjw = KP707106781 * (TbL - TbK);			 Tjx = Tj2 + Tj1;			 Tjy = Tjw + Tjx;			 TjM = Tjx - Tjw;			 TbJ = T7h + T7k;			 TbM = KP707106781 * (TbK + TbL);			 TbN = TbJ - TbM;			 Td9 = TbJ + TbM;		    }	       }	       {		    E T4t, ThR, Ti6, Ti8, T7g, Ti7, ThU, ThV;		    {			 E T2L, T4s, ThW, Ti5;			 T2L = T1L + T2K;			 T4s = T3C + T4r;			 T4t = T2L + T4s;			 ThR = T2L - T4s;			 ThW = Thy + Thz;			 Ti5 = ThX + Ti4;			 Ti6 = ThW + Ti5;			 Ti8 = Ti5 - ThW;		    }		    {			 E T5S, T7f, ThS, ThT;			 T5S = T5c + T5R;			 T7f = T6B + T7e;			 T7g = T5S + T7f;			 Ti7 = T7f - T5S;			 ThS = ThD + ThE;			 ThT = ThI + ThJ;			 ThU = ThS - ThT;			 ThV = ThS + ThT;		    }		    ri[WS(ios, 32)] = T4t - T7g;		    ii[WS(ios, 32)] = Ti6 - ThV;		    ri[0] = T4t + T7g;		    ii[0] = ThV + Ti6;		    ri[WS(ios, 48)] = ThR - ThU;		    ii[WS(ios, 48)] = Ti8 - Ti7;		    ri[WS(ios, 16)] = ThR + ThU;		    ii[WS(ios, 16)] = Ti7 + Ti8;	       }	       {		    E ThB, ThN, Tic, Tie, ThG, ThO, ThL, ThP;		    {			 E Thx, ThA, Tia, Tib;			 Thx = T1L - T2K;			 ThA = Thy - Thz;			 ThB = Thx + ThA;			 ThN = Thx - ThA;			 Tia = T4r - T3C;			 Tib = Ti4 - ThX;			 Tic = Tia + Tib;			 Tie = Tib - Tia;		    }		    {			 E ThC, ThF, ThH, ThK;			 ThC = T5c - T5R;			 ThF = ThD - ThE;			 ThG = ThC + ThF;			 ThO = ThF - ThC;			 ThH = T6B - T7e;			 ThK = ThI - ThJ;			 ThL = ThH - ThK;			 ThP = ThH + ThK;		    }		    {			 E ThM, Ti9, ThQ, Tid;			 ThM = KP707106781 * (ThG + ThL);			 ri[WS(ios, 40)] = ThB - ThM;			 ri[WS(ios, 8)] = ThB + ThM;			 Ti9 = KP707106781 * (ThO + ThP);			 ii[WS(ios, 8)] = Ti9 + Tic;			 ii[WS(ios, 40)] = Tic - Ti9;			 ThQ = KP707106781 * (ThO - ThP);			 ri[WS(ios, 56)] = ThN - ThQ;			 ri[WS(ios, 24)] = ThN + ThQ;			 Tid = KP707106781 * (ThL - ThG);			 ii[WS(ios, 24)] = Tid + Tie;			 ii[WS(ios, 56)] = Tie - Tid;		    }	       }	       {		    E TgP, Thd, Tiq, Tis, Th0, The, Thb, Thf;		    {			 E TgD, TgO, Tio, Tip;			 TgD = Tgz - TgC;			 TgO = KP707106781 * (TgI - TgN);			 TgP = TgD + TgO;			 Thd = TgD - TgO;			 Tio = KP707106781 * (Thj - Thi);			 Tip = Tii - Tih;			 Tiq = Tio + Tip;			 Tis = Tip - Tio;		    }		    {			 E TgU, TgZ, Th5, Tha;			 TgU = TgS - TgT;			 TgZ = TgV - TgY;			 Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ);			 The = FNMS(KP923879532, TgZ, KP382683432 * TgU);			 Th5 = Th1 - Th4;			 Tha = Th8 - Th9;			 Thb = FNMS(KP923879532, Tha, KP382683432 * Th5);			 Thf = FMA(KP382683432, Tha, KP923879532 * Th5);		    }		    {			 E Thc, Tin, Thg, Tir;			 Thc = Th0 + Thb;			 ri[WS(ios, 44)] = TgP - Thc;			 ri[WS(ios, 12)] = TgP + Thc;			 Tin = The + Thf;			 ii[WS(ios, 12)] = Tin + Tiq;			 ii[WS(ios, 44)] = Tiq - Tin;			 Thg = The - Thf;			 ri[WS(ios, 60)] = Thd - Thg;			 ri[WS(ios, 28)] = Thd + Thg;			 Tir = Thb - Th0;			 ii[WS(ios, 28)] = Tir + Tis;			 ii[WS(ios, 60)] = Tis - Tir;		    }	       }	       {		    E TfB, TfJ, TiO, TiQ, TfE, TfK, TfH, TfL;		    {			 E Tfx, TfA, TiK, TiN;			 Tfx = TdZ + Tea;			 TfA = Tfy + Tfz;			 TfB = Tfx + TfA;			 TfJ = Tfx - TfA;			 TiK = Tem + Tex;			 TiN = TiL + TiM;			 TiO = TiK + TiN;			 TiQ = TiN - TiK;		    }		    {			 E TfC, TfD, TfF, TfG;			 TfC = TeE + TeP;			 TfD = TeV + TeY;			 TfE = FMA(KP555570233, TfC, KP831469612 * TfD);			 TfK = FNMS(KP555570233, TfD, KP831469612 * TfC);			 TfF = Tf5 + Tfg;			 TfG = Tfm + Tfp;			 TfH = FNMS(KP555570233, TfG, KP831469612 * TfF);			 TfL = FMA(KP831469612, TfG, KP555570233 * TfF);		    }		    {			 E TfI, TiJ, TfM, TiP;			 TfI = TfE + TfH;			 ri[WS(ios, 38)] = TfB - TfI;			 ri[WS(ios, 6)] = TfB + TfI;			 TiJ = TfK + TfL;			 ii[WS(ios, 6)] = TiJ + TiO;			 ii[WS(ios, 38)] = TiO - TiJ;			 TfM = TfK - TfL;			 ri[WS(ios, 54)] = TfJ - TfM;			 ri[WS(ios, 22)] = TfJ + TfM;			 TiP = TfH - TfE;			 ii[WS(ios, 22)] = TiP + TiQ;			 ii[WS(ios, 54)] = TiQ - TiP;		    }	       }	       {		    E Thl, Tht, Tik, Tim, Tho, Thu, Thr, Thv;		    {			 E Thh, Thk, Tig, Tij;			 Thh = Tgz + TgC;			 Thk = KP707106781 * (Thi + Thj);			 Thl = Thh + Thk;			 Tht = Thh - Thk;			 Tig = KP707106781 * (TgI + TgN);			 Tij = Tih + Tii;			 Tik = Tig + Tij;			 Tim = Tij - Tig;		    }		    {			 E Thm, Thn, Thp, Thq;			 Thm = TgS + TgT;			 Thn = TgV + TgY;			 Tho = FMA(KP382683432, Thm, KP923879532 * Thn);			 Thu = FNMS(KP382683432, Thn, KP923879532 * Thm);			 Thp = Th1 + Th4;			 Thq = Th8 + Th9;			 Thr = FNMS(KP382683432, Thq, KP923879532 * Thp);			 Thv = FMA(KP923879532, Thq, KP382683432 * Thp);		    }		    {			 E Ths, Tif, Thw, Til;			 Ths = Tho + Thr;			 ri[WS(ios, 36)] = Thl - Ths;			 ri[WS(ios, 4)] = Thl + Ths;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -