⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 q1_5.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:39:14 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twidsq -compact -variables 4 -reload-twiddle -dif -n 5 -name q1_5 -include q.h *//* * This function contains 200 FP additions, 140 FP multiplications, * (or, 130 additions, 70 multiplications, 70 fused multiply/add), * 75 stack variables, and 100 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twidsq.ml,v 1.14 2003/03/15 20:29:42 stevenj Exp $ */#include "q.h"static const R *q1_5(R *rio, R *iio, const R *W, stride is, stride vs, int m, int dist){     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP587785252, +0.587785252292473129168705954639072768597652438);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     int i;     for (i = m; i > 0; i = i - 1, rio = rio + dist, iio = iio + dist, W = W + 8) {	  E T1, Ta, TG, Tv, T8, Tb, Tp, Tj, TD, To, Tq, Tr, TN, TW, T1s;	  E T1h, TU, TX, T1b, T15, T1p, T1a, T1c, T1d, T1z, T1I, T2e, T23, T1G, T1J;	  E T1X, T1R, T2b, T1W, T1Y, T1Z, T3v, T3p, T3J, T3u, T3w, T3x, T37, T3g, T3M;	  E T3B, T3e, T3h, T2l, T2u, T30, T2P, T2s, T2v, T2J, T2D, T2X, T2I, T2K, T2L;	  {	       E T7, Tu, T4, Tt;	       T1 = rio[0];	       {		    E T5, T6, T2, T3;		    T5 = rio[WS(is, 2)];		    T6 = rio[WS(is, 3)];		    T7 = T5 + T6;		    Tu = T5 - T6;		    T2 = rio[WS(is, 1)];		    T3 = rio[WS(is, 4)];		    T4 = T2 + T3;		    Tt = T2 - T3;	       }	       Ta = KP559016994 * (T4 - T7);	       TG = FNMS(KP587785252, Tt, KP951056516 * Tu);	       Tv = FMA(KP951056516, Tt, KP587785252 * Tu);	       T8 = T4 + T7;	       Tb = FNMS(KP250000000, T8, T1);	  }	  {	       E Ti, Tn, Tf, Tm;	       Tp = iio[0];	       {		    E Tg, Th, Td, Te;		    Tg = iio[WS(is, 2)];		    Th = iio[WS(is, 3)];		    Ti = Tg - Th;		    Tn = Tg + Th;		    Td = iio[WS(is, 1)];		    Te = iio[WS(is, 4)];		    Tf = Td - Te;		    Tm = Td + Te;	       }	       Tj = FMA(KP951056516, Tf, KP587785252 * Ti);	       TD = FNMS(KP587785252, Tf, KP951056516 * Ti);	       To = KP559016994 * (Tm - Tn);	       Tq = Tm + Tn;	       Tr = FNMS(KP250000000, Tq, Tp);	  }	  {	       E TT, T1g, TQ, T1f;	       TN = rio[WS(vs, 1)];	       {		    E TR, TS, TO, TP;		    TR = rio[WS(vs, 1) + WS(is, 2)];		    TS = rio[WS(vs, 1) + WS(is, 3)];		    TT = TR + TS;		    T1g = TR - TS;		    TO = rio[WS(vs, 1) + WS(is, 1)];		    TP = rio[WS(vs, 1) + WS(is, 4)];		    TQ = TO + TP;		    T1f = TO - TP;	       }	       TW = KP559016994 * (TQ - TT);	       T1s = FNMS(KP587785252, T1f, KP951056516 * T1g);	       T1h = FMA(KP951056516, T1f, KP587785252 * T1g);	       TU = TQ + TT;	       TX = FNMS(KP250000000, TU, TN);	  }	  {	       E T14, T19, T11, T18;	       T1b = iio[WS(vs, 1)];	       {		    E T12, T13, TZ, T10;		    T12 = iio[WS(vs, 1) + WS(is, 2)];		    T13 = iio[WS(vs, 1) + WS(is, 3)];		    T14 = T12 - T13;		    T19 = T12 + T13;		    TZ = iio[WS(vs, 1) + WS(is, 1)];		    T10 = iio[WS(vs, 1) + WS(is, 4)];		    T11 = TZ - T10;		    T18 = TZ + T10;	       }	       T15 = FMA(KP951056516, T11, KP587785252 * T14);	       T1p = FNMS(KP587785252, T11, KP951056516 * T14);	       T1a = KP559016994 * (T18 - T19);	       T1c = T18 + T19;	       T1d = FNMS(KP250000000, T1c, T1b);	  }	  {	       E T1F, T22, T1C, T21;	       T1z = rio[WS(vs, 2)];	       {		    E T1D, T1E, T1A, T1B;		    T1D = rio[WS(vs, 2) + WS(is, 2)];		    T1E = rio[WS(vs, 2) + WS(is, 3)];		    T1F = T1D + T1E;		    T22 = T1D - T1E;		    T1A = rio[WS(vs, 2) + WS(is, 1)];		    T1B = rio[WS(vs, 2) + WS(is, 4)];		    T1C = T1A + T1B;		    T21 = T1A - T1B;	       }	       T1I = KP559016994 * (T1C - T1F);	       T2e = FNMS(KP587785252, T21, KP951056516 * T22);	       T23 = FMA(KP951056516, T21, KP587785252 * T22);	       T1G = T1C + T1F;	       T1J = FNMS(KP250000000, T1G, T1z);	  }	  {	       E T1Q, T1V, T1N, T1U;	       T1X = iio[WS(vs, 2)];	       {		    E T1O, T1P, T1L, T1M;		    T1O = iio[WS(vs, 2) + WS(is, 2)];		    T1P = iio[WS(vs, 2) + WS(is, 3)];		    T1Q = T1O - T1P;		    T1V = T1O + T1P;		    T1L = iio[WS(vs, 2) + WS(is, 1)];		    T1M = iio[WS(vs, 2) + WS(is, 4)];		    T1N = T1L - T1M;		    T1U = T1L + T1M;	       }	       T1R = FMA(KP951056516, T1N, KP587785252 * T1Q);	       T2b = FNMS(KP587785252, T1N, KP951056516 * T1Q);	       T1W = KP559016994 * (T1U - T1V);	       T1Y = T1U + T1V;	       T1Z = FNMS(KP250000000, T1Y, T1X);	  }	  {	       E T3o, T3t, T3l, T3s;	       T3v = iio[WS(vs, 4)];	       {		    E T3m, T3n, T3j, T3k;		    T3m = iio[WS(vs, 4) + WS(is, 2)];		    T3n = iio[WS(vs, 4) + WS(is, 3)];		    T3o = T3m - T3n;		    T3t = T3m + T3n;		    T3j = iio[WS(vs, 4) + WS(is, 1)];		    T3k = iio[WS(vs, 4) + WS(is, 4)];		    T3l = T3j - T3k;		    T3s = T3j + T3k;	       }	       T3p = FMA(KP951056516, T3l, KP587785252 * T3o);	       T3J = FNMS(KP587785252, T3l, KP951056516 * T3o);	       T3u = KP559016994 * (T3s - T3t);	       T3w = T3s + T3t;	       T3x = FNMS(KP250000000, T3w, T3v);	  }	  {	       E T3d, T3A, T3a, T3z;	       T37 = rio[WS(vs, 4)];	       {		    E T3b, T3c, T38, T39;		    T3b = rio[WS(vs, 4) + WS(is, 2)];		    T3c = rio[WS(vs, 4) + WS(is, 3)];		    T3d = T3b + T3c;		    T3A = T3b - T3c;		    T38 = rio[WS(vs, 4) + WS(is, 1)];		    T39 = rio[WS(vs, 4) + WS(is, 4)];		    T3a = T38 + T39;		    T3z = T38 - T39;	       }	       T3g = KP559016994 * (T3a - T3d);	       T3M = FNMS(KP587785252, T3z, KP951056516 * T3A);	       T3B = FMA(KP951056516, T3z, KP587785252 * T3A);	       T3e = T3a + T3d;	       T3h = FNMS(KP250000000, T3e, T37);	  }	  {	       E T2r, T2O, T2o, T2N;	       T2l = rio[WS(vs, 3)];	       {		    E T2p, T2q, T2m, T2n;		    T2p = rio[WS(vs, 3) + WS(is, 2)];		    T2q = rio[WS(vs, 3) + WS(is, 3)];		    T2r = T2p + T2q;		    T2O = T2p - T2q;		    T2m = rio[WS(vs, 3) + WS(is, 1)];		    T2n = rio[WS(vs, 3) + WS(is, 4)];		    T2o = T2m + T2n;		    T2N = T2m - T2n;	       }	       T2u = KP559016994 * (T2o - T2r);	       T30 = FNMS(KP587785252, T2N, KP951056516 * T2O);	       T2P = FMA(KP951056516, T2N, KP587785252 * T2O);	       T2s = T2o + T2r;	       T2v = FNMS(KP250000000, T2s, T2l);	  }	  {	       E T2C, T2H, T2z, T2G;	       T2J = iio[WS(vs, 3)];	       {		    E T2A, T2B, T2x, T2y;		    T2A = iio[WS(vs, 3) + WS(is, 2)];		    T2B = iio[WS(vs, 3) + WS(is, 3)];		    T2C = T2A - T2B;		    T2H = T2A + T2B;		    T2x = iio[WS(vs, 3) + WS(is, 1)];		    T2y = iio[WS(vs, 3) + WS(is, 4)];		    T2z = T2x - T2y;		    T2G = T2x + T2y;	       }	       T2D = FMA(KP951056516, T2z, KP587785252 * T2C);	       T2X = FNMS(KP587785252, T2z, KP951056516 * T2C);	       T2I = KP559016994 * (T2G - T2H);	       T2K = T2G + T2H;	       T2L = FNMS(KP250000000, T2K, T2J);	  }	  rio[0] = T1 + T8;	  iio[0] = Tp + Tq;	  rio[WS(is, 1)] = TN + TU;	  iio[WS(is, 1)] = T1b + T1c;	  rio[WS(is, 2)] = T1z + T1G;	  iio[WS(is, 2)] = T1X + T1Y;	  iio[WS(is, 4)] = T3v + T3w;	  rio[WS(is, 4)] = T37 + T3e;	  rio[WS(is, 3)] = T2l + T2s;	  iio[WS(is, 3)] = T2J + T2K;	  {	       E Tk, Ty, Tw, TA, Tc, Ts;	       Tc = Ta + Tb;	       Tk = Tc + Tj;	       Ty = Tc - Tj;	       Ts = To + Tr;	       Tw = Ts - Tv;	       TA = Tv + Ts;	       {		    E T9, Tl, Tx, Tz;		    T9 = W[0];		    Tl = W[1];		    rio[WS(vs, 1)] = FMA(T9, Tk, Tl * Tw);		    iio[WS(vs, 1)] = FNMS(Tl, Tk, T9 * Tw);		    Tx = W[6];		    Tz = W[7];		    rio[WS(vs, 4)] = FMA(Tx, Ty, Tz * TA);		    iio[WS(vs, 4)] = FNMS(Tz, Ty, Tx * TA);	       }	  }	  {	       E TE, TK, TI, TM, TC, TH;	       TC = Tb - Ta;	       TE = TC - TD;	       TK = TC + TD;	       TH = Tr - To;	       TI = TG + TH;	       TM = TH - TG;	       {		    E TB, TF, TJ, TL;		    TB = W[2];		    TF = W[3];		    rio[WS(vs, 2)] = FMA(TB, TE, TF * TI);		    iio[WS(vs, 2)] = FNMS(TF, TE, TB * TI);		    TJ = W[4];		    TL = W[5];		    rio[WS(vs, 3)] = FMA(TJ, TK, TL * TM);		    iio[WS(vs, 3)] = FNMS(TL, TK, TJ * TM);	       }	  }	  {	       E T2c, T2i, T2g, T2k, T2a, T2f;	       T2a = T1J - T1I;	       T2c = T2a - T2b;	       T2i = T2a + T2b;	       T2f = T1Z - T1W;	       T2g = T2e + T2f;	       T2k = T2f - T2e;	       {		    E T29, T2d, T2h, T2j;		    T29 = W[2];		    T2d = W[3];		    rio[WS(vs, 2) + WS(is, 2)] = FMA(T29, T2c, T2d * T2g);		    iio[WS(vs, 2) + WS(is, 2)] = FNMS(T2d, T2c, T29 * T2g);		    T2h = W[4];		    T2j = W[5];		    rio[WS(vs, 3) + WS(is, 2)] = FMA(T2h, T2i, T2j * T2k);		    iio[WS(vs, 3) + WS(is, 2)] = FNMS(T2j, T2i, T2h * T2k);	       }	  }	  {	       E T3K, T3Q, T3O, T3S, T3I, T3N;	       T3I = T3h - T3g;	       T3K = T3I - T3J;	       T3Q = T3I + T3J;	       T3N = T3x - T3u;	       T3O = T3M + T3N;	       T3S = T3N - T3M;	       {		    E T3H, T3L, T3P, T3R;		    T3H = W[2];		    T3L = W[3];		    rio[WS(vs, 2) + WS(is, 4)] = FMA(T3H, T3K, T3L * T3O);		    iio[WS(vs, 2) + WS(is, 4)] = FNMS(T3L, T3K, T3H * T3O);		    T3P = W[4];		    T3R = W[5];		    rio[WS(vs, 3) + WS(is, 4)] = FMA(T3P, T3Q, T3R * T3S);		    iio[WS(vs, 3) + WS(is, 4)] = FNMS(T3R, T3Q, T3P * T3S);	       }	  }	  {	       E T1S, T26, T24, T28, T1K, T20;	       T1K = T1I + T1J;	       T1S = T1K + T1R;	       T26 = T1K - T1R;	       T20 = T1W + T1Z;	       T24 = T20 - T23;	       T28 = T23 + T20;	       {		    E T1H, T1T, T25, T27;		    T1H = W[0];		    T1T = W[1];		    rio[WS(vs, 1) + WS(is, 2)] = FMA(T1H, T1S, T1T * T24);		    iio[WS(vs, 1) + WS(is, 2)] = FNMS(T1T, T1S, T1H * T24);		    T25 = W[6];		    T27 = W[7];		    rio[WS(vs, 4) + WS(is, 2)] = FMA(T25, T26, T27 * T28);		    iio[WS(vs, 4) + WS(is, 2)] = FNMS(T27, T26, T25 * T28);	       }	  }	  {	       E T2E, T2S, T2Q, T2U, T2w, T2M;	       T2w = T2u + T2v;	       T2E = T2w + T2D;	       T2S = T2w - T2D;	       T2M = T2I + T2L;	       T2Q = T2M - T2P;	       T2U = T2P + T2M;	       {		    E T2t, T2F, T2R, T2T;		    T2t = W[0];		    T2F = W[1];		    rio[WS(vs, 1) + WS(is, 3)] = FMA(T2t, T2E, T2F * T2Q);		    iio[WS(vs, 1) + WS(is, 3)] = FNMS(T2F, T2E, T2t * T2Q);		    T2R = W[6];		    T2T = W[7];		    rio[WS(vs, 4) + WS(is, 3)] = FMA(T2R, T2S, T2T * T2U);		    iio[WS(vs, 4) + WS(is, 3)] = FNMS(T2T, T2S, T2R * T2U);	       }	  }	  {	       E T2Y, T34, T32, T36, T2W, T31;	       T2W = T2v - T2u;	       T2Y = T2W - T2X;	       T34 = T2W + T2X;	       T31 = T2L - T2I;	       T32 = T30 + T31;	       T36 = T31 - T30;	       {		    E T2V, T2Z, T33, T35;		    T2V = W[2];		    T2Z = W[3];		    rio[WS(vs, 2) + WS(is, 3)] = FMA(T2V, T2Y, T2Z * T32);		    iio[WS(vs, 2) + WS(is, 3)] = FNMS(T2Z, T2Y, T2V * T32);		    T33 = W[4];		    T35 = W[5];		    rio[WS(vs, 3) + WS(is, 3)] = FMA(T33, T34, T35 * T36);		    iio[WS(vs, 3) + WS(is, 3)] = FNMS(T35, T34, T33 * T36);	       }	  }	  {	       E T3q, T3E, T3C, T3G, T3i, T3y;	       T3i = T3g + T3h;	       T3q = T3i + T3p;	       T3E = T3i - T3p;	       T3y = T3u + T3x;	       T3C = T3y - T3B;	       T3G = T3B + T3y;	       {		    E T3f, T3r, T3D, T3F;		    T3f = W[0];		    T3r = W[1];		    rio[WS(vs, 1) + WS(is, 4)] = FMA(T3f, T3q, T3r * T3C);		    iio[WS(vs, 1) + WS(is, 4)] = FNMS(T3r, T3q, T3f * T3C);		    T3D = W[6];		    T3F = W[7];		    rio[WS(vs, 4) + WS(is, 4)] = FMA(T3D, T3E, T3F * T3G);		    iio[WS(vs, 4) + WS(is, 4)] = FNMS(T3F, T3E, T3D * T3G);	       }	  }	  {	       E T1q, T1w, T1u, T1y, T1o, T1t;	       T1o = TX - TW;	       T1q = T1o - T1p;	       T1w = T1o + T1p;	       T1t = T1d - T1a;	       T1u = T1s + T1t;	       T1y = T1t - T1s;	       {		    E T1n, T1r, T1v, T1x;		    T1n = W[2];		    T1r = W[3];		    rio[WS(vs, 2) + WS(is, 1)] = FMA(T1n, T1q, T1r * T1u);		    iio[WS(vs, 2) + WS(is, 1)] = FNMS(T1r, T1q, T1n * T1u);		    T1v = W[4];		    T1x = W[5];		    rio[WS(vs, 3) + WS(is, 1)] = FMA(T1v, T1w, T1x * T1y);		    iio[WS(vs, 3) + WS(is, 1)] = FNMS(T1x, T1w, T1v * T1y);	       }	  }	  {	       E T16, T1k, T1i, T1m, TY, T1e;	       TY = TW + TX;	       T16 = TY + T15;	       T1k = TY - T15;	       T1e = T1a + T1d;	       T1i = T1e - T1h;	       T1m = T1h + T1e;	       {		    E TV, T17, T1j, T1l;		    TV = W[0];		    T17 = W[1];		    rio[WS(vs, 1) + WS(is, 1)] = FMA(TV, T16, T17 * T1i);		    iio[WS(vs, 1) + WS(is, 1)] = FNMS(T17, T16, TV * T1i);		    T1j = W[6];		    T1l = W[7];		    rio[WS(vs, 4) + WS(is, 1)] = FMA(T1j, T1k, T1l * T1m);		    iio[WS(vs, 4) + WS(is, 1)] = FNMS(T1l, T1k, T1j * T1m);	       }	  }     }     return W;}static const tw_instr twinstr[] = {     {TW_FULL, 0, 5},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 5, "q1_5", twinstr, {130, 70, 70, 0}, &GENUS, 0, 0, 0 };void X(codelet_q1_5) (planner *p) {     X(kdft_difsq_register) (p, q1_5, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -