⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 q1_3.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:39:14 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twidsq -compact -variables 4 -reload-twiddle -dif -n 3 -name q1_3 -include q.h *//* * This function contains 48 FP additions, 36 FP multiplications, * (or, 30 additions, 18 multiplications, 18 fused multiply/add), * 35 stack variables, and 36 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twidsq.ml,v 1.14 2003/03/15 20:29:42 stevenj Exp $ */#include "q.h"static const R *q1_3(R *rio, R *iio, const R *W, stride is, stride vs, int m, int dist){     DK(KP866025403, +0.866025403784438646763723170752936183471402627);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     int i;     for (i = m; i > 0; i = i - 1, rio = rio + dist, iio = iio + dist, W = W + 4) {	  E T1, T4, T6, Tc, Td, Te, T9, Tf, Tl, To, Tq, Tw, Tx, Ty, Tt;	  E Tz, TR, TS, TN, TT, TF, TI, TK, TQ;	  {	       E T2, T3, Tr, Ts;	       T1 = rio[0];	       T2 = rio[WS(is, 1)];	       T3 = rio[WS(is, 2)];	       T4 = T2 + T3;	       T6 = FNMS(KP500000000, T4, T1);	       Tc = KP866025403 * (T3 - T2);	       {		    E T7, T8, Tm, Tn;		    Td = iio[0];		    T7 = iio[WS(is, 1)];		    T8 = iio[WS(is, 2)];		    Te = T7 + T8;		    T9 = KP866025403 * (T7 - T8);		    Tf = FNMS(KP500000000, Te, Td);		    Tl = rio[WS(vs, 1)];		    Tm = rio[WS(vs, 1) + WS(is, 1)];		    Tn = rio[WS(vs, 1) + WS(is, 2)];		    To = Tm + Tn;		    Tq = FNMS(KP500000000, To, Tl);		    Tw = KP866025403 * (Tn - Tm);	       }	       Tx = iio[WS(vs, 1)];	       Tr = iio[WS(vs, 1) + WS(is, 1)];	       Ts = iio[WS(vs, 1) + WS(is, 2)];	       Ty = Tr + Ts;	       Tt = KP866025403 * (Tr - Ts);	       Tz = FNMS(KP500000000, Ty, Tx);	       {		    E TL, TM, TG, TH;		    TR = iio[WS(vs, 2)];		    TL = iio[WS(vs, 2) + WS(is, 1)];		    TM = iio[WS(vs, 2) + WS(is, 2)];		    TS = TL + TM;		    TN = KP866025403 * (TL - TM);		    TT = FNMS(KP500000000, TS, TR);		    TF = rio[WS(vs, 2)];		    TG = rio[WS(vs, 2) + WS(is, 1)];		    TH = rio[WS(vs, 2) + WS(is, 2)];		    TI = TG + TH;		    TK = FNMS(KP500000000, TI, TF);		    TQ = KP866025403 * (TH - TG);	       }	  }	  rio[0] = T1 + T4;	  iio[0] = Td + Te;	  rio[WS(is, 1)] = Tl + To;	  iio[WS(is, 1)] = Tx + Ty;	  iio[WS(is, 2)] = TR + TS;	  rio[WS(is, 2)] = TF + TI;	  {	       E Ta, Tg, T5, Tb;	       Ta = T6 + T9;	       Tg = Tc + Tf;	       T5 = W[0];	       Tb = W[1];	       rio[WS(vs, 1)] = FMA(T5, Ta, Tb * Tg);	       iio[WS(vs, 1)] = FNMS(Tb, Ta, T5 * Tg);	  }	  {	       E TW, TY, TV, TX;	       TW = TK - TN;	       TY = TT - TQ;	       TV = W[2];	       TX = W[3];	       rio[WS(vs, 2) + WS(is, 2)] = FMA(TV, TW, TX * TY);	       iio[WS(vs, 2) + WS(is, 2)] = FNMS(TX, TW, TV * TY);	  }	  {	       E TC, TE, TB, TD;	       TC = Tq - Tt;	       TE = Tz - Tw;	       TB = W[2];	       TD = W[3];	       rio[WS(vs, 2) + WS(is, 1)] = FMA(TB, TC, TD * TE);	       iio[WS(vs, 2) + WS(is, 1)] = FNMS(TD, TC, TB * TE);	  }	  {	       E Tu, TA, Tp, Tv;	       Tu = Tq + Tt;	       TA = Tw + Tz;	       Tp = W[0];	       Tv = W[1];	       rio[WS(vs, 1) + WS(is, 1)] = FMA(Tp, Tu, Tv * TA);	       iio[WS(vs, 1) + WS(is, 1)] = FNMS(Tv, Tu, Tp * TA);	  }	  {	       E TO, TU, TJ, TP;	       TO = TK + TN;	       TU = TQ + TT;	       TJ = W[0];	       TP = W[1];	       rio[WS(vs, 1) + WS(is, 2)] = FMA(TJ, TO, TP * TU);	       iio[WS(vs, 1) + WS(is, 2)] = FNMS(TP, TO, TJ * TU);	  }	  {	       E Ti, Tk, Th, Tj;	       Ti = T6 - T9;	       Tk = Tf - Tc;	       Th = W[2];	       Tj = W[3];	       rio[WS(vs, 2)] = FMA(Th, Ti, Tj * Tk);	       iio[WS(vs, 2)] = FNMS(Tj, Ti, Th * Tk);	  }     }     return W;}static const tw_instr twinstr[] = {     {TW_FULL, 0, 3},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 3, "q1_3", twinstr, {30, 18, 18, 0}, &GENUS, 0, 0, 0 };void X(codelet_q1_3) (planner *p) {     X(kdft_difsq_register) (p, q1_3, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -