⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 q1bv_4.c

📁 fftw-3.0.1
💻 C
字号:
/* * Copyright (c) 2003 Matteo Frigo * Copyright (c) 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Jul  5 21:45:21 EDT 2003 */#include "codelet-dft.h"/* Generated by: /homee/stevenj/cvs/fftw3.0.1/genfft/gen_twidsq_c -simd -compact -variables 4 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 *//* * This function contains 44 FP additions, 24 FP multiplications, * (or, 44 additions, 24 multiplications, 0 fused multiply/add), * 22 stack variables, and 32 memory accesses *//* * Generator Id's :  * $Id: algsimp.ml,v 1.7 2003/03/15 20:29:42 stevenj Exp $ * $Id: fft.ml,v 1.2 2003/03/15 20:29:42 stevenj Exp $ * $Id: gen_twidsq_c.ml,v 1.1 2003/03/26 12:45:03 athena Exp $ */#include "q1b.h"static const R *q1bv_4(R *ri, R *ii, const R *W, stride is, stride vs, int m, int dist){     int i;     R *x;     x = ii;     BEGIN_SIMD();     for (i = 0; i < m; i = i + VL, x = x + (VL * dist), W = W + (TWVL * 6)) {	  V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;	  V Tl;	  {	       V T1, T2, Ty, Tz;	       T1 = LD(&(x[0]), dist, &(x[0]));	       T2 = LD(&(x[WS(is, 2)]), dist, &(x[0]));	       T3 = VSUB(T1, T2);	       T9 = VADD(T1, T2);	       Ty = LD(&(x[WS(vs, 3)]), dist, &(x[WS(vs, 3)]));	       Tz = LD(&(x[WS(vs, 3) + WS(is, 2)]), dist, &(x[WS(vs, 3)]));	       TA = VSUB(Ty, Tz);	       TG = VADD(Ty, Tz);	  }	  {	       V TB, TC, T4, T5;	       TB = LD(&(x[WS(vs, 3) + WS(is, 1)]), dist, &(x[WS(vs, 3) + WS(is, 1)]));	       TC = LD(&(x[WS(vs, 3) + WS(is, 3)]), dist, &(x[WS(vs, 3) + WS(is, 1)]));	       TD = VBYI(VSUB(TB, TC));	       TH = VADD(TB, TC);	       T4 = LD(&(x[WS(is, 1)]), dist, &(x[WS(is, 1)]));	       T5 = LD(&(x[WS(is, 3)]), dist, &(x[WS(is, 1)]));	       T6 = VBYI(VSUB(T4, T5));	       Ta = VADD(T4, T5);	  }	  {	       V Tc, Td, Tn, To;	       Tc = LD(&(x[WS(vs, 1)]), dist, &(x[WS(vs, 1)]));	       Td = LD(&(x[WS(vs, 1) + WS(is, 2)]), dist, &(x[WS(vs, 1)]));	       Te = VSUB(Tc, Td);	       Tk = VADD(Tc, Td);	       Tn = LD(&(x[WS(vs, 2)]), dist, &(x[WS(vs, 2)]));	       To = LD(&(x[WS(vs, 2) + WS(is, 2)]), dist, &(x[WS(vs, 2)]));	       Tp = VSUB(Tn, To);	       Tv = VADD(Tn, To);	  }	  {	       V Tq, Tr, Tf, Tg;	       Tq = LD(&(x[WS(vs, 2) + WS(is, 1)]), dist, &(x[WS(vs, 2) + WS(is, 1)]));	       Tr = LD(&(x[WS(vs, 2) + WS(is, 3)]), dist, &(x[WS(vs, 2) + WS(is, 1)]));	       Ts = VBYI(VSUB(Tq, Tr));	       Tw = VADD(Tq, Tr);	       Tf = LD(&(x[WS(vs, 1) + WS(is, 1)]), dist, &(x[WS(vs, 1) + WS(is, 1)]));	       Tg = LD(&(x[WS(vs, 1) + WS(is, 3)]), dist, &(x[WS(vs, 1) + WS(is, 1)]));	       Th = VBYI(VSUB(Tf, Tg));	       Tl = VADD(Tf, Tg);	  }	  ST(&(x[0]), VADD(T9, Ta), dist, &(x[0]));	  ST(&(x[WS(is, 1)]), VADD(Tk, Tl), dist, &(x[WS(is, 1)]));	  ST(&(x[WS(is, 2)]), VADD(Tv, Tw), dist, &(x[0]));	  ST(&(x[WS(is, 3)]), VADD(TG, TH), dist, &(x[WS(is, 1)]));	  {	       V T7, Ti, Tt, TE;	       T7 = BYTW(&(W[TWVL * 4]), VSUB(T3, T6));	       ST(&(x[WS(vs, 3)]), T7, dist, &(x[WS(vs, 3)]));	       Ti = BYTW(&(W[TWVL * 4]), VSUB(Te, Th));	       ST(&(x[WS(vs, 3) + WS(is, 1)]), Ti, dist, &(x[WS(vs, 3) + WS(is, 1)]));	       Tt = BYTW(&(W[TWVL * 4]), VSUB(Tp, Ts));	       ST(&(x[WS(vs, 3) + WS(is, 2)]), Tt, dist, &(x[WS(vs, 3)]));	       TE = BYTW(&(W[TWVL * 4]), VSUB(TA, TD));	       ST(&(x[WS(vs, 3) + WS(is, 3)]), TE, dist, &(x[WS(vs, 3) + WS(is, 1)]));	  }	  {	       V T8, Tj, Tu, TF;	       T8 = BYTW(&(W[0]), VADD(T3, T6));	       ST(&(x[WS(vs, 1)]), T8, dist, &(x[WS(vs, 1)]));	       Tj = BYTW(&(W[0]), VADD(Te, Th));	       ST(&(x[WS(vs, 1) + WS(is, 1)]), Tj, dist, &(x[WS(vs, 1) + WS(is, 1)]));	       Tu = BYTW(&(W[0]), VADD(Tp, Ts));	       ST(&(x[WS(vs, 1) + WS(is, 2)]), Tu, dist, &(x[WS(vs, 1)]));	       TF = BYTW(&(W[0]), VADD(TA, TD));	       ST(&(x[WS(vs, 1) + WS(is, 3)]), TF, dist, &(x[WS(vs, 1) + WS(is, 1)]));	  }	  {	       V Tb, Tm, Tx, TI;	       Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));	       ST(&(x[WS(vs, 2)]), Tb, dist, &(x[WS(vs, 2)]));	       Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));	       ST(&(x[WS(vs, 2) + WS(is, 1)]), Tm, dist, &(x[WS(vs, 2) + WS(is, 1)]));	       Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));	       ST(&(x[WS(vs, 2) + WS(is, 2)]), Tx, dist, &(x[WS(vs, 2)]));	       TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));	       ST(&(x[WS(vs, 2) + WS(is, 3)]), TI, dist, &(x[WS(vs, 2) + WS(is, 1)]));	  }     }     END_SIMD();     return W;}static const tw_instr twinstr[] = {     VTW(1),     VTW(2),     VTW(3),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 4, "q1bv_4", twinstr, {44, 24, 0, 0}, &GENUS, 0, 0, 0 };void X(codelet_q1bv_4) (planner *p) {     X(kdft_difsq_register) (p, q1bv_4, &desc);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -