⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hessiansecond.m

📁 level set matlab code
💻 M
字号:
function [ second, first ] = hessianSecond(grid, data)
% hessianSecond: second order centered difference approx of the Hessian.
%
%   [ second, first ] = hessianSecond(grid, data)
%
% Computes a second order centered difference approximation to the Hessian
%   (the second order mixed spatial derivative of the data).
%
% parameters:
%   grid	Grid structure (see processGrid.m for details).
%   data        Data array.
%
%   second      2D cell array containing centered approx to Hessian's terms.
%                 To save space, only lower left half of Hessian is given
%                 (since mixed partials are derivative order independent).
%                     second{i,j} = d^2 data / dx_i dx_j   if j < i
%                                 = d^2 data / dx_i^2      if j = i
%                                 = []                     if j > i
%   first       1D cell array containing centered approx to gradient
%                 (incidentally computed while finding second).
%                     first{i}    = d data / dx_i
%
% Every nonempty element of second (and first) is the same size as
%   the data array.
%
% Why is a gradient approximation provided?
%   A gradient approximation is part of the process of computing the mixed
%   partial terms in the Hessian, so returning its value requires
%   little extra computation.  Note that this gradient is a second order 
%   centered difference approximation, so it is inappropriate for use in 
%   the convection term of a PDE (upwinding should be used for such terms).

% Copyright 2004 Ian M. Mitchell (mitchell@cs.ubc.ca).
% This software is used, copied and distributed under the licensing 
%   agreement contained in the file LICENSE in the top directory of 
%   the distribution.
%
% Ian Mitchell, 6/3/03

%---------------------------------------------------------------------------
dxInv = 1 ./ grid.dx;

% How big is the stencil?
stencil = 1;

% Add ghost cells to every dimension.
data = addGhostAllDims(grid, data, stencil);

%---------------------------------------------------------------------------
% We need indices to the real data.
indReal = cell(grid.dim, 1);
for i = 1 : grid.dim
  indReal{i} = 1 + stencil : grid.N(i) + stencil;
end

% Also indices to the whole data set (including ghost cells).
indAll = cell(grid.dim, 1);
for i = 1 : grid.dim
  indAll{i} = 1 : grid.N(i) + 2 * stencil;
end

%---------------------------------------------------------------------------
% Centered first partials (gradient approximation).
first = cell(grid.dim, 1);
for i = 1 : grid.dim
  % leave the ghost cells on other dimensions intact (for mixed partials below)
  indices1 = indAll;
  indices2 = indAll;
  indices1{i} = indReal{i} + 1;
  indices2{i} = indReal{i} - 1;
  first{i} = 0.5 * dxInv(i) * (data(indices1{:}) - data(indices2{:}));
end

%---------------------------------------------------------------------------
% Centered second partials (Hessian approximation).
%   We will only fill the lower half of second, 
%   since mixed partials' derivative ordering doesn't matter.
second = cell(grid.dim, grid.dim);
for i = 1 : grid.dim
  % First, the pure second partials. 
  %   Get rid of ghost cells on other dimensions.
  indices1 = indReal;
  indices2 = indReal;
  indices1{i} = indices1{i} + 1;
  indices2{i} = indices2{i} - 1;
  second{i,i} = dxInv(i).^2 * (data(indices1{:}) - 2 * data(indReal{:}) ...
                               + data(indices2{:}));

  % Now the mixed partials.
  for j = 1 : i - 1
    % Get rid of ghost cells in dimensions without derivatives.
    indices1 = indReal;
    indices2 = indReal;
    % In already differentiated dimension, we have no ghost cells.
    indices1{i} = 1 : grid.N(i);
    indices2{i} = 1 : grid.N(i);
    % Now take a centered difference in second direction.
    indices1{j} = indReal{j} + 1;
    indices2{j} = indReal{j} - 1;

    second{i,j} =  0.5 * dxInv(i) * (first{i}(indices1{:}) ...
                                     - first{i}(indices2{:}));
  end
end

%---------------------------------------------------------------------------
% If the user wants the gradient approximation,
%   strip unnecessary ghost cells from first partials.
if(nargout > 1)
  for i = 1 : grid.dim
    indices1 = indReal;
    % In already differentiated dimension, we have no ghost cells.
    indices1{i} = 1 : grid.N(i);
    first{i} = first{i}(indices1{:});
  end
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -