📄 upwindfirstweno5b.m
字号:
function [ derivL, derivR ] = upwindFirstWENO5b(grid, data, dim, generateAll)
% upwindFirstWENO5b: fifth order upwind approx of first deriv by direct calc.
%
% [ derivL, derivR ] = upwindFirstWENO5b(grid, data, dim, generateAll)
%
% Computes a fifth order directional approximation to the first derivative,
% using a Weighted Essentially Non-Oscillatory (WENO) approximation.
%
% The approximation is constructed by the equations in O&F, section 3.4
% equations (3.25) - (3.40). In particular, the three ENO
% approximations are computed by (3.25) - (3.27). This is an
% alternative to the more efficient divided difference
% table for computing the ENO approximations, which is used in
% upwindFirstWENO5a. In particular, the left and right approximations
% are computed independently in this version.
%
% The generateAll option is used for debugging, and possibly by
% higher order weighting schemes. Under normal circumstances
% the default (generateAll = false) should be used. Notice that
% the generateAll option will just return the three ENO approximations.
%
% parameters:
% grid Grid structure (see processGrid.m for details).
% data Data array.
% dim Which dimension to compute derivative on.
% generateAll Return all possible third order upwind approximations.
% If this boolean is true, then derivL and derivR will
% be cell vectors containing all the approximations
% instead of just the WENO approximation. Note that
% the ordering of these approximations may not be
% consistent between upwindFirstWENO1 and upwindFirstWENO2.
% (optional, default = 0)
%
% derivL Left approximation of first derivative (same size as data).
% derivR Right approximation of first derivative (same size as data).
% Copyright 2004 Ian M. Mitchell (mitchell@cs.ubc.ca).
% This software is used, copied and distributed under the licensing
% agreement contained in the file LICENSE in the top directory of
% the distribution.
%
% Ian Mitchell, 1/26/04
%---------------------------------------------------------------------------
if((dim < 0) | (dim > grid.dim))
error('Illegal dim parameter');
end
if(nargin < 4)
generateAll = 0;
end
% How big is the stencil?
stencil = 3;
% Add ghost cells.
gdata = feval(grid.bdry{dim}, data, dim, stencil, grid.bdryData{dim});
%---------------------------------------------------------------------------
if(generateAll)
% Compute the left and right approximations.
% No need to build WENO approximation, just return all the ENO approx.
derivL = upwindFirstENO3bHelper(grid, gdata, dim, -1);
derivR = upwindFirstENO3bHelper(grid, gdata, dim, +1);
%---------------------------------------------------------------------------
else
%---------------------------------------------------------------------------
% Compute the left and right ENO approximations.
[ dL, smoothL, epsilonL ] = upwindFirstENO3bHelper(grid, gdata, dim, -1);
[ dR, smoothR, epsilonR ] = upwindFirstENO3bHelper(grid, gdata, dim, +1);
%---------------------------------------------------------------------------
% Compute and apply weights to generate a higher order WENO approximation.
derivL = weight(dL, smoothL, epsilonL);
derivR = weight(dR, smoothR, epsilonR);
end
%---------------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%---------------------------------------------------------------------------
function deriv = weight(d, s, epsilon)
% deriv = weight(d, s, epsilon)
%
% Helper function to compute and apply WENO weighting terms.
% Compute weighting terms
alpha1 = 0.1 ./ (s{1} + epsilon).^2;
alpha2 = 0.6 ./ (s{2} + epsilon).^2;
alpha3 = 0.3 ./ (s{3} + epsilon).^2;
sum = (alpha1 + alpha2 + alpha3);
deriv = (alpha1 .* d{1} + alpha2 .* d{2} + alpha3 .* d{3}) ./ sum;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -