⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 termnormal.m

📁 level set matlab code
💻 M
字号:
function [ ydot, stepBound ] = termNormal(t, y, schemeData)
% termNormal: motion in the normal direction in an HJ PDE with upwinding.
%
% [ ydot, stepBound ] = termNormal(t, y, schemeData)
%
% Computes an approximation of motion of the interface at speed a(x,t) in
%   the normal direction.  The PDE is:
%
%            D_t \phi = -a(x,t) \| \grad \phi \|.
%
%   Based on methods outlined in O&F, chapter 6.  The Godunov scheme from
%   chapter 6.2 is used.
%
% parameters:
%   t            Time at beginning of timestep.
%   y            Data array in vector form.
%   schemeData	 A structure (see below).
%
%   ydot	 Change in the data array, in vector form.
%   stepBound	 CFL bound on timestep for stability.
%
% schemeData is a structure containing data specific to this type of 
%   term approximation.  For this function it contains the field(s)
%
%   .grid	 Grid structure (see processGrid.m for details).
%   .derivFunc   Function handle to upwinded finite difference 
%                  derivative approximation.
%   .speed	 A description of the normal speed (see below).
%
% It may contain addition fields at the user's discretion.
%
% schemeData.speed can provide the speed in one of two ways:
%   1) For time invariant speed, a scalar or an array the same 
%      size as data.
%   2) For general speed, a function handle to a function with prototype
%      a = scalarGridFunc(t, data, schemeData), where the output a is the
%      scalar/array from (1) and the input arguments are the same as those
%      of this function (except that data = y has been reshaped to its
%      original size).  In this case, it may be useful to include additional
%      fields in schemeData.
%
% In the notation of OF text,
%
%   data = y	  \phi, reshaped to vector form.
%   derivFunc	  Function to calculate phi_i^+-.
%   speed	  a.
%
%   delta = ydot  -a \| \grad \phi \|, with upwinded approx to \grad \phi
%                   and reshaped to vector form.


% Copyright 2004 Ian M. Mitchell (mitchell@cs.ubc.ca).
% This software is used, copied and distributed under the licensing 
%   agreement contained in the file LICENSE in the top directory of 
%   the distribution.
%
% Ian Mitchell 3/1/04.

  %---------------------------------------------------------------------------
  checkStructureFields(schemeData, 'speed', 'derivFunc', 'grid');

  %---------------------------------------------------------------------------
  grid = schemeData.grid;
  data = reshape(y, grid.shape);

  %---------------------------------------------------------------------------
  % Get speed field.
  if(isa(schemeData.speed, 'double'))
    speed = schemeData.speed;
  elseif(isa(schemeData.speed, 'function_handle'))
    speed = feval(schemeData.speed, t, data, schemeData);
  else
    error('schemeData.speed must be a scalar, array or function handle');
  end
  
  %---------------------------------------------------------------------------
  % In the end, all we care about is the magnitude of the gradient.
  magnitude = zeros(size(data));

  % In this case, keep track of stepBound for each node until the very
  %   end (since we need to divide by the appropriate gradient magnitude).
  stepBoundInv = zeros(size(data));

  % Determine the upwind direction dimension by dimension
  for i = 1 : grid.dim
    
    % Get upwinded derivative approximations.
    [ derivL, derivR ] = feval(schemeData.derivFunc, grid, data, i);
    
    % Effective velocity in this dimension (scaled by \|\grad \phi\|).
    prodL = speed .* derivL;
    prodR = speed .* derivR;
    magL = abs(prodL);
    magR = abs(prodR);
    
    % Determine the upwind direction.
    %   Either both sides agree in sign (take direction in which they agree), 
    %   or characteristics are converging (take larger magnitude direction).
    flowL = ((prodL >= 0) & (prodR >= 0)) | ...
            ((prodL >= 0) & (prodR <= 0) & (magL >= magR));
    flowR = ((prodL <= 0) & (prodR <= 0)) | ...
            ((prodL >= 0) & (prodR <= 0) & (magL < magR));;

    % For diverging characteristics, take gradient = 0
    %   (so we don't actually need to calculate this term).
    %flow0 = ((prodL <= 0) & (prodR >= 0));
    
    % Now we know the upwind direction, add its contribution to \|\grad \phi\|.
    magnitude = magnitude + derivL.^2 .* flowL + derivR.^2 .* flowR;
    
    % CFL condition: sum of effective velocities from O&F (6.2).
    effectiveVelocity = magL .* flowL + magR .* flowR;
    dxInv = 1 / grid.dx(i);
    stepBoundInv = stepBoundInv + dxInv * effectiveVelocity;
  end

  %---------------------------------------------------------------------------
  % Finally, calculate speed * \|\grad \phi\|
  magnitude = sqrt(magnitude);
  delta = speed .* magnitude;

  % Find the most restrictive timestep bound.
  nonZero = find(magnitude > 0);
  stepBoundInvNonZero = stepBoundInv(nonZero) ./ magnitude(nonZero);
  stepBound = 1 / max(stepBoundInvNonZero(:));
  
  % Reshape output into vector format and negate for RHS of ODE.
  ydot = -delta(:);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -