⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kdtree_common.cc

📁 kd树的实现
💻 CC
字号:
// Guy Shechter// June 2004// Variables used for time debugging.TV tv1,tv2; TZ tz;//// Call this function to build the k-d Tree.//Tree *build_kdtree(double *reference, int N, int D, int *index, 		   int L,int offset) {  Tree *treeptr;  if ( (treeptr = (Tree *) malloc(sizeof(Tree))) == NULL )    mexPrintf("Error allocating memory for kD-Tree\n");    treeptr->rootptr = build_kdtree_core(reference, N, D, index, L, offset);  treeptr->dims = D;  return treeptr;}//// This is the core function for building the k-D tree for raw input data.//Node *build_kdtree_core(double *reference, int N, int D, int *index, 			int L,int offset) {  int i,median;  Node *nodeptr;  #ifdef DEBUG_BUILD_TREE  mexPrintf("Entering build_kdtree \n");#endif    if ( (nodeptr = (Node *) malloc(sizeof(Node))) == NULL )    mexPrintf("Error allocating memory for kD-Tree\n");  if ( (nodeptr->pt = (double*) malloc(sizeof(double)*D)) == NULL )    mexPrintf("Error allocating memory for kD-Tree\n");    if (L==1) {    for (i=0; i < D; i++)      nodeptr->pt[i] = EVAL_INDEX(index[0],i,N);    nodeptr->index = (unsigned int) index[0];    #ifdef DEBUG_BUILD_TREE    mexPrintf("Created leaf     node, (dim=%d) (value: ", offset);    for (i=0; i < D; i++)      mexPrintf(" %f",nodeptr->pt[i]);    mexPrintf(" )\n");#endif        nodeptr->orientation = offset;    nodeptr->left=NULL;    nodeptr->right=NULL;    return nodeptr;  }    quicksort(index,0,L-1,reference,offset,N);  median = (int)((L)/2.0);    for (i=0; i < D; i++)    nodeptr->pt[i] = EVAL_INDEX(index[median],i,N);  nodeptr->index = (unsigned int) index[median];  nodeptr->orientation = offset;  nodeptr->left=NULL;  nodeptr->right=NULL;  #ifdef DEBUG_BUILD_TREE  mexPrintf("Created internal node, (dim=%d) (value: ", offset);  for (i=0; i < D; i++)    mexPrintf(" %f",nodeptr->pt[i]);  mexPrintf(" )\n");#endif    nodeptr->left = build_kdtree_core(reference,N,D,index,median,(offset+1)%D);    if (L-median-1)    nodeptr->right = build_kdtree_core(reference,N,D,index+median+1,				       L-median-1,(offset+1)%D);    return nodeptr;}// //   The following two functions are for the quicksort algorithm //int partition(int *a, int p, int r, double *reference, int offset, int D){  int i,j;  double x,tmp;    x= EVAL_INDEX(a[p],offset,D); i=p-1; j=r+1;  while (1) {    for (j--; EVAL_INDEX(a[j],offset,D) > x; j--);    for (i++; EVAL_INDEX(a[i],offset,D) <x; i++);    if (i<j){      INT_SWAP(a[j],a[i]);    }    else return j;  }}void quicksort(int *ra, int p, int r, double *reference, int offset,int D){  int q;    if (p < r) {    q = partition(ra,p,r,reference,offset,D);    quicksort(ra,p,q,reference,offset,D);    quicksort(ra,q+1,r,reference,offset,D);  }}//// Deallocate memory used by the k-D tree//void free_tree(Node *pVertex) {    if (pVertex == NULL)    return;  if (pVertex->left)  free_tree(pVertex->left);  if (pVertex->right) free_tree(pVertex->right);    free(pVertex->pt);  free(pVertex);  return;}//// Compute the norm distance between two points of dimension Dim//double calcdistance(double *pt1, double *pt2, int Dim){  int j;  double d=0;  for (j=0; j < Dim; j++)     d+= (pt1[j]-pt2[j])*(pt1[j]-pt2[j]);  return (sqrt(d));}Node *pointLocation(Node *v, double *pt,int D){    //if (!v) v=root;  if ( ( v->left == NULL) && (v->right == NULL) )     return v;  if (    pt[v->orientation] < v->pt[ v->orientation] )    return ( (v->left) ? pointLocation(v->left,pt,D) : v);  else if (    pt[v->orientation] > v->pt[v->orientation]  )     return ( (v->right) ? pointLocation(v->right,pt,D): v);  else {    //What we have is pt[v->orientation] == v->pt[v->orientation]     Node *vl = ( (v->left)? pointLocation(v->left,pt,D) : v);    Node *vr = ( (v->right)? pointLocation(v->right,pt,D) : v);    if ( calcdistance(vl->pt,pt,D) < calcdistance(vr->pt,pt,D) )      return vl;    else      return vr;  }}Node * rangeQuery(Node *v, double distance, double *pt, int D){  Node *current=NULL, *tmp;  int j;    if ( ( (v->pt[v->orientation] - distance) <=  pt[v->orientation]) &&       ( (v->pt[v->orientation] + distance) >=  pt[v->orientation]) ){    if (calcdistance(pt,v->pt,D) <= distance){      current=(Node*) malloc(sizeof(Node));      current->pt=(double*) malloc(sizeof(double)*D);      current->right=NULL;      for (j=0; j < D; j++) current->pt[j]=v->pt[j];      current->index=v->index;    }  }    if (  (!(v->left)) && (!(v->right)) )     return current;    tmp=current;  while (tmp && tmp->right)     tmp=tmp->right;    if (v->left){    if ( v->pt[v->orientation] >= (pt[v->orientation] - distance ) ){      if (tmp)	tmp->right=rangeQuery(v->left, distance, pt,D);      else	current=rangeQuery(v->left, distance, pt, D);    }  }    tmp=current;  while (tmp &&tmp->right)     tmp=tmp->right;    if (v->right){    if (   v->pt[v->orientation]  <= (pt[v->orientation] + distance ) ){      if (tmp)	tmp->right=rangeQuery(v->right, distance, pt, D);      else	current=   rangeQuery(v->right, distance, pt, D);    }  }      return current;}//// The top-level function for running a query on the k-D tree.//void run_queries( Node *pVertex, double *model, int M, int D, 		  double *closest_pt, double *distance, short ReturnType) {    int i,j;  double min_distance, *pt;  Node *LL, *cur, *leaf, *tmp;    pt= (double*)malloc(sizeof(double)*D);    for (i=0; i < M; i++) {    #ifdef DEBUG_RUN_QUERIES    mexPrintf("Running Query (%d/%d) (value: ",	      i+1, M);    for (j=0; j < D ; j++)      mexPrintf(" %f", model[ M*j+i]);    mexPrintf(" )\n");#endif        for (j=0; j < D; j++)       pt[j]=model[M*j+i];        leaf=pointLocation(pVertex,pt,D);    min_distance=calcdistance(leaf->pt, pt,D )+0.001;    LL=rangeQuery(pVertex,min_distance,pt,D);    if (!LL) {      if (ReturnType == RETURN_INDEX) 	closest_pt[i] = -1;      else{	for (j=0; j< D; j++)	  closest_pt[j*M+i]=-1;      }      mexPrintf("Null LL\n");    }     else {      distance[i]=calcdistance(LL->pt, pt,D);      if (ReturnType == RETURN_INDEX) 	closest_pt[i] = LL->index;      else {	for (j=0; j < D; j++) 	  closest_pt[j*M+i] = LL->pt[j];      }      cur=LL;      while (cur){	if ( calcdistance(cur->pt, pt,D) <= distance[i] ) {	  if (ReturnType == RETURN_INDEX) 	    closest_pt[i] = cur->index;	  else {	    for (j=0; j < D; j++) 	      closest_pt[j*M+i] = cur->pt[j];	  }	  distance[i]=calcdistance(cur->pt, pt,D);	}	tmp=cur;	cur=cur->right;	free(tmp->pt);	free(tmp);      }    }#ifdef DEBUG_RUN_QUERIES    mexPrintf("Distance to closest point is %f\n",distance[i]);#endif  }  free(pt);}// // Outputs the k-D tree while performing a depth first traversal.//void display_tree(Node *nodeptr,int D) {  int i;    mexPrintf("Node: (dim = %d) (idx= %u) (value = ", nodeptr->orientation,	    nodeptr->index);  for (i=0; i <D; i++)    mexPrintf("%f\t",nodeptr->pt[i]);  mexPrintf(")\n");  if (nodeptr->left == NULL)     mexPrintf("Left is (null)\n");  else{    mexPrintf("Going left\n");    display_tree(nodeptr->left,D);  }    if (nodeptr->right == NULL)     mexPrintf("Right is (null)\n");  else{    mexPrintf("Going right\n");    display_tree(nodeptr->right,D);  }}//// The top-level function for running a range search on the k-D tree.//void run_range_search( Node *pVertex, double *model, int M, int D, 		       double distlim, double **pts_in_range, 		       unsigned int *L, unsigned int **indices){    int i,j, count;  double min_distance;  double *pt;  Node *LL, *cur, *leaf, *tmp;  pt= (double*)malloc(sizeof(double)*D);  for (i=0; i < M; i++) {#ifdef DEBUG_RUN_RANGE_SEARCH    mexPrintf("Running Search (%d/%d) (value: ",	      i+1, M);    for (j=0; j < D ; j++)      mexPrintf(" %f", model[ M*j+i]);    mexPrintf(" )\n");#endif    for (j=0; j < D ; j++)      pt[j]=model[M*j+i];    LL=rangeQuery(pVertex,distlim,pt,D);    if (!LL) {      *L=0;      (*pts_in_range)=NULL;#ifdef DEBUG_RUN_RANGE_SEARCH      mexPrintf("Null LL\n");#endif    }     else {      cur=LL;      count=0;      while (cur){	cur=cur->right; count++;      }#ifdef DEBUG_RUN_RANGE_SEARCH      mexPrintf("Found %d points\n",count);#endif      *L=count;      (*indices) = (unsigned int *) malloc (sizeof(unsigned int)*count);      (*pts_in_range) = (double *) malloc (sizeof(double) *count*D);      cur=LL;      count=0;      while(cur){	(*indices)[count] = cur->index;	for (j=0; j < D; j++) {	  (*pts_in_range)[j*(*L)+count] = cur->pt[j];	}	tmp=cur;	cur=cur->right;	free(tmp->pt);	free(tmp);	count++;      }    }  }  free(pt);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -