⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 odemath.h

📁 赫赫大名的 OGRE 游戏引擎
💻 H
字号:
/************************************************************************* *                                                                       * * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       * * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          * *                                                                       * * This library is free software; you can redistribute it and/or         * * modify it under the terms of EITHER:                                  * *   (1) The GNU Lesser General Public License as published by the Free  * *       Software Foundation; either version 2.1 of the License, or (at  * *       your option) any later version. The text of the GNU Lesser      * *       General Public License is included with this library in the     * *       file LICENSE.TXT.                                               * *   (2) The BSD-style license that is included with this library in     * *       the file LICENSE-BSD.TXT.                                       * *                                                                       * * This library is distributed in the hope that it will be useful,       * * but WITHOUT ANY WARRANTY; without even the implied warranty of        * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    * * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     * *                                                                       * *************************************************************************/#ifndef _ODE_ODEMATH_H_#define _ODE_ODEMATH_H_#include <ode/common.h>#ifdef __cplusplusextern "C" {#endif/* 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced * p and q indexes apart respectively. dDOT() means dDOT11. */#ifdef __cplusplusinline dReal dDOT (const dReal *a, const dReal *b)  { return ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2]); }inline dReal dDOT14(const dReal *a, const dReal *b)  { return ((a)[0]*(b)[0] + (a)[1]*(b)[4] + (a)[2]*(b)[8]); }inline dReal dDOT41(const dReal *a, const dReal *b)  { return ((a)[0]*(b)[0] + (a)[4]*(b)[1] + (a)[8]*(b)[2]); }inline dReal dDOT44(const dReal *a, const dReal *b)  { return ((a)[0]*(b)[0] + (a)[4]*(b)[4] + (a)[8]*(b)[8]); }#else#define dDOT(a,b)   ((a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2])#define dDOT14(a,b) ((a)[0]*(b)[0] + (a)[1]*(b)[4] + (a)[2]*(b)[8])#define dDOT41(a,b) ((a)[0]*(b)[0] + (a)[4]*(b)[1] + (a)[8]*(b)[2])#define dDOT44(a,b) ((a)[0]*(b)[0] + (a)[4]*(b)[4] + (a)[8]*(b)[8])#endif/* cross product, set a = b x c. dCROSSpqr means that elements of `a', `b' * and `c' are spaced p, q and r indexes apart respectively. * dCROSS() means dCROSS111. `op' is normally `=', but you can set it to * +=, -= etc to get other effects. */#define dCROSS(a,op,b,c) \  (a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \  (a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \  (a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]);#define dCROSSpqr(a,op,b,c,p,q,r) \  (a)[  0] op ((b)[  q]*(c)[2*r] - (b)[2*q]*(c)[  r]); \  (a)[  p] op ((b)[2*q]*(c)[  0] - (b)[  0]*(c)[2*r]); \  (a)[2*p] op ((b)[  0]*(c)[  r] - (b)[  q]*(c)[  0]);#define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4)#define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1)#define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4)#define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1)#define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4)#define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1)#define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4)/* set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b. * A is stored by rows, and has `skip' elements per row. the matrix is * assumed to be already zero, so this does not write zero elements! * if (plus,minus) is (+,-) then a positive version will be written. * if (plus,minus) is (-,+) then a negative version will be written. */#define dCROSSMAT(A,a,skip,plus,minus) \  (A)[1] = minus (a)[2]; \  (A)[2] = plus (a)[1]; \  (A)[(skip)+0] = plus (a)[2]; \  (A)[(skip)+2] = minus (a)[0]; \  (A)[2*(skip)+0] = minus (a)[1]; \  (A)[2*(skip)+1] = plus (a)[0];/* compute the distance between two 3-vectors (oops, C++!) */#ifdef __cplusplusinline dReal dDISTANCE (const dVector3 a, const dVector3 b)  { return dSqrt( (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1]) +		   (a[2]-b[2])*(a[2]-b[2]) ); }#else#define dDISTANCE(a,b) \ (dSqrt( ((a)[0]-(b)[0])*((a)[0]-(b)[0]) + ((a)[1]-(b)[1])*((a)[1]-(b)[1]) + \	 ((a)[2]-(b)[2])*((a)[2]-(b)[2]) ))#endif/* normalize 3x1 and 4x1 vectors (i.e. scale them to unit length) */void dNormalize3 (dVector3 a);void dNormalize4 (dVector4 a);/* given a unit length "normal" vector n, generate vectors p and q vectors * that are an orthonormal basis for the plane space perpendicular to n. * i.e. this makes p,q such that n,p,q are all perpendicular to each other. * q will equal n x p. if n is not unit length then p will be unit length but * q wont be. */void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);/* special case matrix multipication, with operator selection */#define dMULTIPLYOP0_331(A,op,B,C) \  (A)[0] op dDOT((B),(C)); \  (A)[1] op dDOT((B+4),(C)); \  (A)[2] op dDOT((B+8),(C));#define dMULTIPLYOP1_331(A,op,B,C) \  (A)[0] op dDOT41((B),(C)); \  (A)[1] op dDOT41((B+1),(C)); \  (A)[2] op dDOT41((B+2),(C));#define dMULTIPLYOP0_133(A,op,B,C) \  (A)[0] op dDOT14((B),(C)); \  (A)[1] op dDOT14((B),(C+1)); \  (A)[2] op dDOT14((B),(C+2));#define dMULTIPLYOP0_333(A,op,B,C) \  (A)[0] op dDOT14((B),(C)); \  (A)[1] op dDOT14((B),(C+1)); \  (A)[2] op dDOT14((B),(C+2)); \  (A)[4] op dDOT14((B+4),(C)); \  (A)[5] op dDOT14((B+4),(C+1)); \  (A)[6] op dDOT14((B+4),(C+2)); \  (A)[8] op dDOT14((B+8),(C)); \  (A)[9] op dDOT14((B+8),(C+1)); \  (A)[10] op dDOT14((B+8),(C+2));#define dMULTIPLYOP1_333(A,op,B,C) \  (A)[0] op dDOT44((B),(C)); \  (A)[1] op dDOT44((B),(C+1)); \  (A)[2] op dDOT44((B),(C+2)); \  (A)[4] op dDOT44((B+1),(C)); \  (A)[5] op dDOT44((B+1),(C+1)); \  (A)[6] op dDOT44((B+1),(C+2)); \  (A)[8] op dDOT44((B+2),(C)); \  (A)[9] op dDOT44((B+2),(C+1)); \  (A)[10] op dDOT44((B+2),(C+2));#define dMULTIPLYOP2_333(A,op,B,C) \  (A)[0] op dDOT((B),(C)); \  (A)[1] op dDOT((B),(C+4)); \  (A)[2] op dDOT((B),(C+8)); \  (A)[4] op dDOT((B+4),(C)); \  (A)[5] op dDOT((B+4),(C+4)); \  (A)[6] op dDOT((B+4),(C+8)); \  (A)[8] op dDOT((B+8),(C)); \  (A)[9] op dDOT((B+8),(C+4)); \  (A)[10] op dDOT((B+8),(C+8));#ifdef __cplusplusinline void dMULTIPLY0_331(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP0_331(A,=,B,C) }inline void dMULTIPLY1_331(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP1_331(A,=,B,C) }inline void dMULTIPLY0_133(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP0_133(A,=,B,C) }inline void dMULTIPLY0_333(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP0_333(A,=,B,C) }inline void dMULTIPLY1_333(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP1_333(A,=,B,C) }inline void dMULTIPLY2_333(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP2_333(A,=,B,C) }inline void dMULTIPLYADD0_331(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP0_331(A,+=,B,C) }inline void dMULTIPLYADD1_331(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP1_331(A,+=,B,C) }inline void dMULTIPLYADD0_133(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP0_133(A,+=,B,C) }inline void dMULTIPLYADD0_333(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP0_333(A,+=,B,C) }inline void dMULTIPLYADD1_333(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP1_333(A,+=,B,C) }inline void dMULTIPLYADD2_333(dReal *A, const dReal *B, const dReal *C)  { dMULTIPLYOP2_333(A,+=,B,C) }#else#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)#define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C)#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)#define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C)#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)#define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C)#define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C)#define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C)#define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C)#define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C)#endif#ifdef __cplusplus}#endif#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -