📄 example_bumpmapping.cg
字号:
// General functions
// Expand a range-compressed vector
float3 expand(float3 v)
{
return (v - 0.5) * 2;
}
/* Bump mapping vertex program
In this program, we want to calculate the tangent space light vector
on a per-vertex level which will get passed to the fragment program,
or to the fixed function dot3 operation, to produce the per-pixel
lighting effect.
*/
void main_vp(float4 position : POSITION,
float3 normal : NORMAL,
float2 uv : TEXCOORD0,
float3 tangent : TEXCOORD1,
// outputs
out float4 oPosition : POSITION,
out float2 oUv : TEXCOORD0,
out float3 oTSLightDir : TEXCOORD1,
// parameters
uniform float3 lightPosition, // object space
uniform float3 eyePosition, // object space
uniform float4x4 worldViewProj)
{
// calculate output position
oPosition = mul(worldViewProj, position);
// pass the main uvs straight through unchanged
oUv = uv;
// calculate tangent space light vector
// Get object space light direction
float3 lightDir = lightPosition - position.xyz;
// Calculate the binormal (NB we assume both normal and tangent are
// already normalised)
// NB looks like nvidia cross params are BACKWARDS to what you'd expect
// this equates to NxT, not TxN
float3 binormal = cross(tangent, normal);
// Form a rotation matrix out of the vectors
float3x3 rotation = float3x3(tangent, binormal, normal);
// Transform the light vector according to this matrix
oTSLightDir = normalize(mul(rotation, lightDir));
}
void main_fp( float2 uv : TEXCOORD0,
float3 TSlightDir : TEXCOORD1,
out float4 colour : COLOR,
uniform float4 lightDiffuse,
uniform sampler2D normalMap,
uniform samplerCUBE normalCubeMap)
{
// retrieve normalised light vector, expand from range-compressed
float3 lightVec = expand(texCUBE(normalCubeMap, TSlightDir).xyz);
// get bump map vector, again expand from range-compressed
float3 bumpVec = expand(tex2D(normalMap, uv).xyz);
// Calculate dot product
colour = lightDiffuse * dot(bumpVec, lightVec);
}
/* Vertex program which includes specular component */
void specular_vp(float4 position : POSITION,
float3 normal : NORMAL,
float2 uv : TEXCOORD0,
float3 tangent : TEXCOORD1,
// outputs
out float4 oPosition : POSITION,
out float2 oUv : TEXCOORD0,
out float3 oTSLightDir : TEXCOORD1,
out float3 oTSHalfAngle : TEXCOORD2,
// parameters
uniform float3 lightPosition, // object space
uniform float3 eyePosition, // object space
uniform float4x4 worldViewProj)
{
// calculate output position
oPosition = mul(worldViewProj, position);
// pass the main uvs straight through unchanged
oUv = uv;
// calculate tangent space light vector
// Get object space light direction
float3 lightDir = lightPosition - position.xyz;
// Calculate the binormal (NB we assume both normal and tangent are
// already normalised)
// NB looks like nvidia cross params are BACKWARDS to what you'd expect
// this equates to NxT, not TxN
float3 binormal = cross(tangent, normal);
// Form a rotation matrix out of the vectors
float3x3 rotation = float3x3(tangent, binormal, normal);
// Transform the light vector according to this matrix
oTSLightDir = normalize(mul(rotation, lightDir));
// Calculate half-angle in tangent space
float3 eyeDir = eyePosition - position.xyz;
float3 halfAngle = normalize(eyeDir + lightDir);
oTSHalfAngle = mul(rotation, halfAngle);
}
/* Fragment program which supports specular component */
void specular_fp( float2 uv : TEXCOORD0,
float3 TSlightDir : TEXCOORD1,
float3 TShalfAngle: TEXCOORD2,
out float4 colour : COLOR,
uniform float4 lightDiffuse,
uniform float4 lightSpecular,
uniform sampler2D normalMap,
uniform samplerCUBE normalCubeMap,
uniform samplerCUBE normalCubeMap2) // we need this second binding to be compatible with ps_1_1, ps_2_0 could reuse the other
{
// retrieve normalised light vector, expand from range-compressed
float3 lightVec = expand(texCUBE(normalCubeMap, TSlightDir).xyz);
// retrieve half angle and normalise through cube map
float3 halfAngle = expand(texCUBE(normalCubeMap2, TShalfAngle).xyz);
// get bump map vector, again expand from range-compressed
float3 bumpVec = expand(tex2D(normalMap, uv).xyz);
// Pre-raise the specular exponent to the eight power
// Note we have no 'pow' function in basic fragment programs, if we were willing to accept compatibility
// with ps_2_0 / arbfp1 and above, we could have a variable shininess parameter
// This is equivalent to
float specFactor = dot(bumpVec, halfAngle);
for (int i = 0; i < 3; ++i)
specFactor *= specFactor;
// Calculate dot product for diffuse
colour = (lightDiffuse * dot(bumpVec, lightVec)) +
(lightSpecular * specFactor);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -