📄 lwenvelope.cpp
字号:
#include "lwEnvelope.h"
lwKey *lwEnvelope::addKey( float time, float value )
{
lwKey *key = new lwKey(time, value);
keys.insert(lower_bound(keys.begin(), keys.end(), key), key);
return key;
}
/*======================================================================
range()
Given the value v of a periodic function, returns the equivalent value
v2 in the principal interval [lo, hi]. If i isn't NULL, it receives
the number of wavelengths between v and v2.
v2 = v - i * (hi - lo)
For example, range( 3 pi, 0, 2 pi, i ) returns pi, with i = 1.
====================================================================== */
float lwEnvelope::range( float v, float lo, float hi, int *i )
{
float v2, r = hi - lo;
if ( r == 0.0 ) {
if ( i ) *i = 0;
return lo;
}
v2 = lo + v - r * ( float ) floor(( double ) v / r );
if ( i ) *i = -( int )(( v2 - v ) / r + ( v2 > v ? 0.5 : -0.5 ));
return v2;
}
/*======================================================================
hermite()
Calculate the Hermite coefficients.
====================================================================== */
void lwEnvelope::hermite( float t, float *h1, float *h2, float *h3, float *h4 )
{
float t2, t3;
t2 = t * t;
t3 = t * t2;
*h2 = 3.0f * t2 - t3 - t3;
*h1 = 1.0f - *h2;
*h4 = t3 - t2;
*h3 = *h4 - t2 + t;
}
/*======================================================================
bezier()
Interpolate the value of a 1D Bezier curve.
====================================================================== */
float lwEnvelope::bezier( float x0, float x1, float x2, float x3, float t )
{
float a, b, c, t2, t3;
t2 = t * t;
t3 = t2 * t;
c = 3.0f * ( x1 - x0 );
b = 3.0f * ( x2 - x1 ) - c;
a = x3 - x0 - c - b;
return a * t3 + b * t2 + c * t + x0;
}
/*======================================================================
bez2_time()
Find the t for which bezier() returns the input time. The handle
endpoints of a BEZ2 curve represent the control points, and these have
(time, value) coordinates, so time is used as both a coordinate and a
parameter for this curve type.
====================================================================== */
float lwEnvelope::bez2_time( float x0, float x1, float x2, float x3, float time, float *t0, float *t1 )
{
float v, t;
t = *t0 + ( *t1 - *t0 ) * 0.5f;
v = bezier( x0, x1, x2, x3, t );
if ( fabs( time - v ) > .0001f ) {
if ( v > time )
*t1 = t;
else
*t0 = t;
return bez2_time( x0, x1, x2, x3, time, t0, t1 );
}
else
return t;
}
/*
======================================================================
bez2()
Interpolate the value of a BEZ2 curve.
====================================================================== */
float lwEnvelope::bez2( lwKey *key0, lwKey *key1, float time )
{
float x, y, t, t0 = 0.0f, t1 = 1.0f;
if ( key0->shape == ID_BEZ2 )
x = key0->time + key0->param[ 2 ];
else
x = key0->time + ( key1->time - key0->time ) / 3.0f;
t = bez2_time( key0->time, x, key1->time + key1->param[ 0 ], key1->time,
time, &t0, &t1 );
if ( key0->shape == ID_BEZ2 )
y = key0->value + key0->param[ 3 ];
else
y = key0->value + key0->param[ 1 ] / 3.0f;
return bezier( key0->value, y, key1->param[ 1 ] + key1->value, key1->value, t );
}
/*
======================================================================
outgoing()
Return the outgoing tangent to the curve at key0. The value returned
for the BEZ2 case is used when extrapolating a linear pre behavior and
when interpolating a non-BEZ2 span.
====================================================================== */
float lwEnvelope::outgoing( unsigned int key0, unsigned int key1 )
{
float a, b, d, t, tout;
switch ( keys[key0]->shape )
{
case ID_TCB:
a = ( 1.0f - keys[key0]->tension )
* ( 1.0f + keys[key0]->continuity )
* ( 1.0f + keys[key0]->bias );
b = ( 1.0f - keys[key0]->tension )
* ( 1.0f - keys[key0]->continuity )
* ( 1.0f - keys[key0]->bias );
d = keys[key1]->value - keys[key0]->value;
if ( key0 > 0 )
{
t = ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time );
tout = t * ( a * ( keys[key0]->value - keys[ key0-1 ]->value ) + b * d );
}
else
tout = b * d;
break;
case ID_LINE:
d = keys[key1]->value - keys[key0]->value;
if ( key0 > 0 )
{
t = ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time );
tout = t * ( keys[key0]->value - keys[ key0-1 ]->value + d );
}
else
tout = d;
break;
case ID_BEZI:
case ID_HERM:
tout = keys[key0]->param[ 1 ];
if ( key0 > 0 )
tout *= ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time );
break;
case ID_BEZ2:
tout = keys[key0]->param[ 3 ] * ( keys[key1]->time - keys[key0]->time );
if ( fabs( keys[key0]->param[ 2 ] ) > 1e-5f )
tout /= keys[key0]->param[ 2 ];
else
tout *= 1e5f;
break;
case ID_STEP:
default:
tout = 0.0f;
break;
}
return tout;
}
/*======================================================================
incoming()
Return the incoming tangent to the curve at key1. The value returned
for the BEZ2 case is used when extrapolating a linear post behavior.
====================================================================== */
float lwEnvelope::incoming( unsigned int key0, unsigned int key1 )
{
float a, b, d, t, tin;
switch ( keys[key1]->shape )
{
case ID_LINE:
d = keys[key1]->value - keys[key0]->value;
if ( key1 < keys.size()-1 )
{
t = ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time );
tin = t * ( keys[ key1+1 ]->value - keys[key1]->value + d );
}
else
tin = d;
break;
case ID_TCB:
a = ( 1.0f - keys[key1]->tension )
* ( 1.0f - keys[key1]->continuity )
* ( 1.0f + keys[key1]->bias );
b = ( 1.0f - keys[key1]->tension )
* ( 1.0f + keys[key1]->continuity )
* ( 1.0f - keys[key1]->bias );
d = keys[key1]->value - keys[key0]->value;
if ( key1 < keys.size()-1 ) {
t = ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time );
tin = t * ( b * ( keys[ key1+1 ]->value - keys[key1]->value ) + a * d );
}
else
tin = a * d;
break;
case ID_BEZI:
case ID_HERM:
tin = keys[key1]->param[ 0 ];
if ( key1 < keys.size()-1 )
tin *= ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time );
break;
return tin;
case ID_BEZ2:
tin = keys[key1]->param[ 1 ] * ( keys[key1]->time - keys[key0]->time );
if ( fabs( keys[key1]->param[ 0 ] ) > 1e-5f )
tin /= keys[key1]->param[ 0 ];
else
tin *= 1e5f;
break;
case ID_STEP:
default:
tin = 0.0f;
break;
}
return tin;
}
/*======================================================================
evalEnvelope()
Given a list of keys and a time, returns the interpolated value of the
envelope at that time.
====================================================================== */
float lwEnvelope::evaluate( float time )
{
lwKey *key0, *key1, *skey, *ekey;
float t, h1, h2, h3, h4, tin, tout, offset = 0.0f;
int noff;
int key0index, key1index;
/* if there's no key, the value is 0 */
if ( keys.size() == 0 ) return 0.0f;
/* if there's only one key, the value is constant */
if ( keys.size() == 1 ) return keys[0]->value;
/* find the first and last keys */
key0index = 0;
key1index = keys.size()-1;
skey = keys[key0index];
ekey = keys[key1index];
/* use pre-behavior if time is before first key time */
if ( time < skey->time )
{
switch ( behavior[ 0 ] )
{
case BEH_RESET:
return 0.0f;
case BEH_CONSTANT:
return skey->value;
case BEH_REPEAT:
time = range( time, skey->time, ekey->time, NULL );
break;
case BEH_OSCILLATE:
time = range( time, skey->time, ekey->time, &noff );
if ( noff % 2 )
time = ekey->time - skey->time - time;
break;
case BEH_OFFSET:
time = range( time, skey->time, ekey->time, &noff );
offset = noff * ( ekey->value - skey->value );
break;
case BEH_LINEAR:
tout = outgoing( key0index, key0index+1 ) / ( keys[key0index+1]->time - keys[key0index]->time );
return tout * ( time - skey->time ) + skey->value;
}
}
/* use post-behavior if time is after last key time */
else if ( time > ekey->time ) {
switch ( behavior[ 1 ] )
{
case BEH_RESET:
return 0.0f;
case BEH_CONSTANT:
return ekey->value;
case BEH_REPEAT:
time = range( time, skey->time, ekey->time, NULL );
break;
case BEH_OSCILLATE:
time = range( time, skey->time, ekey->time, &noff );
if ( noff % 2 )
time = ekey->time - skey->time - time;
break;
case BEH_OFFSET:
time = range( time, skey->time, ekey->time, &noff );
offset = noff * ( ekey->value - skey->value );
break;
case BEH_LINEAR:
tin = incoming( key1index-1, key1index ) / ( ekey->time - keys[key1index-1]->time );
return tin * ( time - ekey->time ) + ekey->value;
}
}
/* get the endpoints of the interval being evaluated */
key0index = keys.size()-2;
key1index = keys.size()-1;
key0 = keys[key0index];
key1 = keys[key1index];
/* check for singularities first */
if ( time == key0->time )
return key0->value + offset;
else if ( time == key1->time )
return key1->value + offset;
/* get interval length, time in [0, 1] */
t = ( time - key0->time ) / ( key1->time - key0->time );
/* interpolate */
switch ( key1->shape )
{
case ID_TCB:
case ID_BEZI:
case ID_HERM:
tout = outgoing( key0index, key1index );
tin = incoming( key0index, key1index );
hermite( t, &h1, &h2, &h3, &h4 );
return h1 * key0->value + h2 * key1->value + h3 * tout + h4 * tin + offset;
case ID_BEZ2:
return bez2( key0, key1, time ) + offset;
case ID_LINE:
return key0->value + t * ( key1->value - key0->value ) + offset;
case ID_STEP:
return key0->value + offset;
default:
return offset;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -