📄 vector3.h
字号:
#pragma once
#include "math.h"
class Vector3
{
public:
float x, y, z;
inline Vector3() {}
inline Vector3( float nx, float ny, float nz ) : x(nx), y(ny), z(nz) {}
inline Vector3( float v[3] ) : x(v[0]), y(v[1]), z(v[2]) {}
inline Vector3( int v[3] ): x((float)v[0]), y((float)v[1]), z((float)v[2]) {}
inline Vector3( const float* const v ) : x(v[0]), y(v[1]), z(v[2]) {}
inline Vector3( const Vector3& v ) : x(v.x), y(v.y), z(v.z) {}
inline float operator [] ( unsigned i ) const
{
return *(&x+i);
}
inline float& operator [] ( unsigned i )
{
return *(&x+i);
}
inline Vector3& operator = ( const Vector3& v )
{
x = v.x;
y = v.y;
z = v.z;
return *this;
}
inline bool operator == ( const Vector3& v ) const
{
return ( x == v.x && y == v.y && z == v.z );
}
inline bool operator != ( const Vector3& v ) const
{
return ( x != v.x || y != v.y || z != v.z );
}
// arithmetic operations
inline Vector3 operator + ( const Vector3& v ) const
{
return Vector3(x + v.x, y + v.y, z + v.z);
}
inline Vector3 operator - ( const Vector3& v ) const
{
return Vector3(x - v.x, y - v.y, z - v.z);
}
inline Vector3 operator * ( float f ) const
{
return Vector3(x * f, y * f, z * f);
}
inline Vector3 operator * ( const Vector3& v) const
{
return Vector3(x * v.x, y * v.y, z * v.z);
}
inline Vector3 operator / ( float f ) const
{
f = 1.0f / f;
return Vector3(x * f, y * f, z * f);
}
inline Vector3 operator - () const
{
return Vector3( -x, -y, -z);
}
inline friend Vector3 operator * ( float f, const Vector3& v )
{
return Vector3(f * v.x, f * v.y, f * v.z);
}
// arithmetic updates
inline Vector3& operator += ( const Vector3& v )
{
x += v.x;
y += v.y;
z += v.z;
return *this;
}
inline Vector3& operator -= ( const Vector3& v )
{
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
inline Vector3& operator *= ( float f )
{
x *= f;
y *= f;
z *= f;
return *this;
}
inline Vector3& operator /= ( float f )
{
f = 1.0f / f;
x *= f;
y *= f;
z *= f;
return *this;
}
inline float length () const
{
return (float)sqrt( x * x + y * y + z * z );
}
inline float squaredLength () const
{
return x * x + y * y + z * z;
}
inline float dotProduct(const Vector3& v) const
{
return x * v.x + y * v.y + z * v.z;
}
inline Vector3 & normalise()
{
float f = (float)sqrt( x * x + y * y + z * z );
// Will also work for zero-sized vectors, but will change nothing
if ( f > 1e-06f )
{
f = 1.0f / f;
x *= f;
y *= f;
z *= f;
}
return *this;
}
inline Vector3 crossProduct( const Vector3& v ) const
{
return Vector3(y * v.z - z * v.y, z * v.x - x * v.z, x * v.y - y * v.x);
}
inline Vector3 midPoint( const Vector3& v ) const
{
return Vector3( ( x + v.x ) * 0.5f, ( y + v.y ) * 0.5f, ( z + v.z ) * 0.5f );
}
inline bool operator < ( const Vector3& v ) const
{
return ( x < v.x && y < v.y && z < v.z );
}
inline bool operator > ( const Vector3& v ) const
{
return ( x > v.x && y > v.y && z > v.z );
}
inline void makeFloor( const Vector3& v )
{
if( v.x < x ) x = v.x;
if( v.y < y ) y = v.y;
if( v.z < z ) z = v.z;
}
inline void makeCeil( const Vector3& v )
{
if( v.x > x ) x = v.x;
if( v.y > y ) y = v.y;
if( v.z > z ) z = v.z;
}
inline Vector3 perpendicular(void)
{
static float fSquareZero = 1e-06f * 1e-06f;
Vector3 perp = this->crossProduct( Vector3::UNIT_X );
// Check length
if( perp.squaredLength() < fSquareZero )
{
/* This vector is the Y axis multiplied by a scalar, so we have
to use another axis.
*/
perp = this->crossProduct( Vector3::UNIT_Y );
}
return perp;
}
// special points
static const Vector3 ZERO;
static const Vector3 UNIT_X;
static const Vector3 UNIT_Y;
static const Vector3 UNIT_Z;
static const Vector3 UNIT_SCALE;
};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -