⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 math.java

📁 j3me java
💻 JAVA
字号:
/* * J3DME Fast 3D software rendering for small devices * Copyright (C) 2001 Onno Hommes * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */package net.jscience.j3dme;/** * This class implements a fast 8-bit fixed-point integer library. * For performance reasons no effort is put into high precision nor * in the range of the fixed points. As mentiond this library uses * 8 bits for the fraction. In addition it only uses 16 bits of the * remaining 24-bits for the non fractional part of a number. The * other 8 bits are used as an overflow to adjust the fixed point prior * for divisions and multiplications. */public abstract class Math{  /**   * The maximum useable fixed point integer   */  public final static int MAX_VALUE = 0x007fffff;  /**   * The minimum usable fixed point integer   */  public final static int MIN_VALUE = -MAX_VALUE;  /**   * The representation of Not A Number   */  public final static int NAN       = 0x7fffffff;  /* The SIN lookup table */  private final static int[] SIN =    {0,      6,12,18,25,31,37,43,49,      56,62,68,74,80,86,92,97,      103,109,115,120,126,131,136,142,      147,152,157,162,167,171,176,181,      185,189,193,197,201,205,209,212,      216,219,222,225,228,231,234,236,      238,241,243,244,246,248,249,251,      252,253,254,254,255,255,255,255,      255,255,255,254,254,253,252,251,      249,248,246,244,243,241,238,236,      234,231,228,225,222,219,216,212,      209,205,201,197,193,189,185,181,      176,171,167,162,157,152,147,142,      136,131,126,120,115,109,103,97,      92,86,80,74,68,62,56,49,      43,37,31,25,18,12,6,0    };  /**   * Returns the multiplications of two fixed point integers<p>   * Calculate the multiplication of the fixed point integer x and   * the fixed point integer y and return the result as a fixed point   * integer. No overflow detection exist so anything greater than   * MAX_VALUE or smaller then MIN_VALUE should be ignored and   * interpreted as NAN.   *   * @param     x The fixed point to be multiplied   * @param     y The fixed point multiplier.   * @return    The multiplication of x times y as fixed point   */  public static int mul(int x, int y){     return x * y >> 8;  }  /**   * Returns the division of two fixed point integers<p>   * Calculate the division of the fixed point integer x divided by   * the fixed point integer y and return the result as a fixed point   * integer. No overflow detection exist so anything greater than   * MAX_VALUE or smaller then MIN_VALUE should be ignored and   * interpreted as NAN.   *   * @param     x The fixed point to be divided   * @param     y The fixed point dividend   * @return    The division of x by y as a fixed point integer   */  public static int div(int x, int y){     return (x << 8) / y ;  }  /**   * Returns the absolute value of a fixed point integer<p>   * Determine the absolute value of the fixed point integer x.   * the fixed point integer y and return the result as a fixed point.   *   * @param     x A fixed point integer   * @return    The absolute value x a fixed point integer   */  public static int abs(int x){     return (x < 0)? -x:x;  }  /**   * Returns the maximum value of two fixed point integers<p>   * Determine the greater of two given fixed point integers   * and return the result as a fixed point integer.   *   * @param     x A fixed point integer   * @param     y A fixed point integer   * @return    The greater of x and y as a fixed point integer   */  public static int max(int x,int y){     return (y > x)? y:x;  }  /**   * Returns the minimum value of two fixed point integers<p>   * Determine the smallest number of two given fixed point integers   * and return the result as a fixed point integer.   *   * @param     x A fixed point integer   * @param     y A fixed point integer   * @return    The lesser value of x and y as a fixed point integer   */  public static int min(int x,int y){     return (x > y)? y:x;  }  /**   * Returns the square root of a fixed point integer<p>   * Calculate the square root of a fixed point integer x using   * the Newton method and iterate only r times to close in on the   * result returned as a fixed point integer. The number of iterations   * must be specified as a normal (i.e. non fixed-point ) integer.   *   * @param     x The fixed point integer to sqrt   * @param     r The number of repetitions in the algorithm   * @return    The square root of x as a fixed point.   */  public static int sqrt(int x,int r){     if (x <= 0) return 0;     int s = (x + 256) >> 1;     for(int i=0;i<r;i++) s = s+(x << 8)/s >> 1;     return (s);  }  /**   * Return the sine of a binary angle.   * Determine the sine value of the binary angle b. This algorithm   * uses binary angles. A full circle has 256 sectors each representing   * an angle (e.g. 128 represents PI , 256 2*PI, etc...).   * The advantage of this approach is that normalization can be done   * with a simple AND operation (b AND 256). This provides the   * performance needed for the 3D engine.   * This function returns a fixed point representing the sine of the angle.   *   * @param     b The binary angle   * @return The sine of the binary angle as a fixed point integer.   */  public static int sin(int b){     b &= 0xff;     if ( b > 0x80) return -SIN[b & 0x7f];     return SIN[b];  }  /**   * Return the cosine of a binary angle.   * Determine the cosine value of the binary angle b.   * This function returns a fixed point representing the cosine of   * the binary angle.   *   * @param     b The binary angle   * @return The cosine of the binary angle as a fixed point integer.   */  public static int cos(int b){     return sin(64-b);  }  /**   * Return the tangent of a binary angle.   * Determine the tangent value of the binary angle b.   * This function returns a fixed point representing the tangent of   * the binary angle or returns NAN for angles representing 1/2PI   * (i.e. b=64) or a multiplication thereof.   *   * @param     b The binary angle   * @return The cosine of the binary angle as a fixed point integer.   */  public static int tan(int b){     int c=cos(b);     return (c != 0)?(sin(b) << 8)/c:NAN;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -