📄 math.java
字号:
/* * J3DME Fast 3D software rendering for small devices * Copyright (C) 2001 Onno Hommes * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */package net.jscience.j3dme;/** * This class implements a fast 8-bit fixed-point integer library. * For performance reasons no effort is put into high precision nor * in the range of the fixed points. As mentiond this library uses * 8 bits for the fraction. In addition it only uses 16 bits of the * remaining 24-bits for the non fractional part of a number. The * other 8 bits are used as an overflow to adjust the fixed point prior * for divisions and multiplications. */public abstract class Math{ /** * The maximum useable fixed point integer */ public final static int MAX_VALUE = 0x007fffff; /** * The minimum usable fixed point integer */ public final static int MIN_VALUE = -MAX_VALUE; /** * The representation of Not A Number */ public final static int NAN = 0x7fffffff; /* The SIN lookup table */ private final static int[] SIN = {0, 6,12,18,25,31,37,43,49, 56,62,68,74,80,86,92,97, 103,109,115,120,126,131,136,142, 147,152,157,162,167,171,176,181, 185,189,193,197,201,205,209,212, 216,219,222,225,228,231,234,236, 238,241,243,244,246,248,249,251, 252,253,254,254,255,255,255,255, 255,255,255,254,254,253,252,251, 249,248,246,244,243,241,238,236, 234,231,228,225,222,219,216,212, 209,205,201,197,193,189,185,181, 176,171,167,162,157,152,147,142, 136,131,126,120,115,109,103,97, 92,86,80,74,68,62,56,49, 43,37,31,25,18,12,6,0 }; /** * Returns the multiplications of two fixed point integers<p> * Calculate the multiplication of the fixed point integer x and * the fixed point integer y and return the result as a fixed point * integer. No overflow detection exist so anything greater than * MAX_VALUE or smaller then MIN_VALUE should be ignored and * interpreted as NAN. * * @param x The fixed point to be multiplied * @param y The fixed point multiplier. * @return The multiplication of x times y as fixed point */ public static int mul(int x, int y){ return x * y >> 8; } /** * Returns the division of two fixed point integers<p> * Calculate the division of the fixed point integer x divided by * the fixed point integer y and return the result as a fixed point * integer. No overflow detection exist so anything greater than * MAX_VALUE or smaller then MIN_VALUE should be ignored and * interpreted as NAN. * * @param x The fixed point to be divided * @param y The fixed point dividend * @return The division of x by y as a fixed point integer */ public static int div(int x, int y){ return (x << 8) / y ; } /** * Returns the absolute value of a fixed point integer<p> * Determine the absolute value of the fixed point integer x. * the fixed point integer y and return the result as a fixed point. * * @param x A fixed point integer * @return The absolute value x a fixed point integer */ public static int abs(int x){ return (x < 0)? -x:x; } /** * Returns the maximum value of two fixed point integers<p> * Determine the greater of two given fixed point integers * and return the result as a fixed point integer. * * @param x A fixed point integer * @param y A fixed point integer * @return The greater of x and y as a fixed point integer */ public static int max(int x,int y){ return (y > x)? y:x; } /** * Returns the minimum value of two fixed point integers<p> * Determine the smallest number of two given fixed point integers * and return the result as a fixed point integer. * * @param x A fixed point integer * @param y A fixed point integer * @return The lesser value of x and y as a fixed point integer */ public static int min(int x,int y){ return (x > y)? y:x; } /** * Returns the square root of a fixed point integer<p> * Calculate the square root of a fixed point integer x using * the Newton method and iterate only r times to close in on the * result returned as a fixed point integer. The number of iterations * must be specified as a normal (i.e. non fixed-point ) integer. * * @param x The fixed point integer to sqrt * @param r The number of repetitions in the algorithm * @return The square root of x as a fixed point. */ public static int sqrt(int x,int r){ if (x <= 0) return 0; int s = (x + 256) >> 1; for(int i=0;i<r;i++) s = s+(x << 8)/s >> 1; return (s); } /** * Return the sine of a binary angle. * Determine the sine value of the binary angle b. This algorithm * uses binary angles. A full circle has 256 sectors each representing * an angle (e.g. 128 represents PI , 256 2*PI, etc...). * The advantage of this approach is that normalization can be done * with a simple AND operation (b AND 256). This provides the * performance needed for the 3D engine. * This function returns a fixed point representing the sine of the angle. * * @param b The binary angle * @return The sine of the binary angle as a fixed point integer. */ public static int sin(int b){ b &= 0xff; if ( b > 0x80) return -SIN[b & 0x7f]; return SIN[b]; } /** * Return the cosine of a binary angle. * Determine the cosine value of the binary angle b. * This function returns a fixed point representing the cosine of * the binary angle. * * @param b The binary angle * @return The cosine of the binary angle as a fixed point integer. */ public static int cos(int b){ return sin(64-b); } /** * Return the tangent of a binary angle. * Determine the tangent value of the binary angle b. * This function returns a fixed point representing the tangent of * the binary angle or returns NAN for angles representing 1/2PI * (i.e. b=64) or a multiplication thereof. * * @param b The binary angle * @return The cosine of the binary angle as a fixed point integer. */ public static int tan(int b){ int c=cos(b); return (c != 0)?(sin(b) << 8)/c:NAN; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -