📄 simplesensor.c
字号:
else
{
// send data ??
}
}
/******************************************************************************
* @fn zb_BindConfirm
*
* @brief The zb_BindConfirm callback is called by the ZigBee stack
* after a bind operation completes.
*
* @param commandId - The command ID of the binding being confirmed.
* status - The status of the bind operation.
*
* @return none
*/
void zb_BindConfirm( uint16 commandId, uint8 status )
{
if ( ( status == ZB_SUCCESS ) && ( myAppState == APP_START ) )
{
myAppState = APP_BOUND;
//Start reporting sensor values
myApp_StartReporting();
}
else
{
// Continue to discover a collector
osal_start_timerEx( sapi_TaskID, MY_FIND_COLLECTOR_EVT, myBindRetryDelay );
}
}
/******************************************************************************
* @fn zb_AllowBindConfirm
*
* @brief Indicates when another device attempted to bind to this device
*
* @param
*
* @return none
*/
void zb_AllowBindConfirm( uint16 source )
{
}
/******************************************************************************
* @fn zb_FindDeviceConfirm
*
* @brief The zb_FindDeviceConfirm callback function is called by the
* ZigBee stack when a find device operation completes.
*
* @param searchType - The type of search that was performed.
* searchKey - Value that the search was executed on.
* result - The result of the search.
*
* @return none
*/
void zb_FindDeviceConfirm( uint8 searchType, uint8 *searchKey, uint8 *result )
{
}
/******************************************************************************
* @fn zb_ReceiveDataIndication
*
* @brief The zb_ReceiveDataIndication callback function is called
* asynchronously by the ZigBee stack to notify the application
* when data is received from a peer device.
*
* @param source - The short address of the peer device that sent the data
* command - The commandId associated with the data
* len - The number of bytes in the pData parameter
* pData - The data sent by the peer device
*
* @return none
*/
void zb_ReceiveDataIndication( uint16 source, uint16 command, uint16 len, uint8 *pData )
{
}
/******************************************************************************
* @fn my_StartReporting
*
* @brief Starts the process to periodically report sensor readings
*
* @param
*
* @return none
*/
void myApp_StartReporting( void )
{
osal_start_timerEx( sapi_TaskID, MY_REPORT_TEMP_EVT, myTempReportPeriod );
osal_start_timerEx( sapi_TaskID, MY_REPORT_BATT_EVT, myBatteryCheckPeriod );
HalLedSet( HAL_LED_1, HAL_LED_MODE_ON );
}
/******************************************************************************
* @fn my_StopReporting
*
* @brief Stops the process to periodically report sensor readings
*
* @param
*
* @return none
*/
void myApp_StopReporting( void )
{
osal_stop_timerEx( sapi_TaskID, MY_REPORT_TEMP_EVT );
osal_stop_timerEx( sapi_TaskID, MY_REPORT_BATT_EVT );
HalLedSet( HAL_LED_1, HAL_LED_MODE_OFF );
}
/******************************************************************************
* @fn myApp_ReadBattery
*
* @brief Reports battery sensor reading
*
* @param
*
* @return
*/
// ADC definitions for CC2430 from the hal_adc.c file
#define HAL_ADC_REF_125V 0x00 /* Internal 1.25V Reference */
#define HAL_ADC_DEC_064 0x00 /* Decimate by 64 : 8-bit resolution */
#define HAL_ADC_DEC_128 0x10 /* Decimate by 128 : 10-bit resolution */
#define HAL_ADC_DEC_512 0x30 /* Decimate by 512 : 14-bit resolution */
#define HAL_ADC_CHN_VDD3 0x0f /* Input channel: VDD/3 */
#define HAL_ADC_CHN_TEMP 0x0e /* Temperature sensor */
uint8 myApp_ReadBattery( void )
{
#if defined HAL_MCU_CC2430
uint16 value;
/* Clear ADC interrupt flag */
ADCIF = 0;
ADCCON3 = (HAL_ADC_REF_125V | HAL_ADC_DEC_128 | HAL_ADC_CHN_VDD3);
/* Wait for the conversion to finish */
while ( !ADCIF );
/* Get the result */
value = ADCL;
value |= ((uint16) ADCH) << 8;
/*
* value now contains measurement of Vdd/3
* 0 indicates 0V and 32767 indicates 1.25V
* voltage = (value*3*1.25)/32767 volts
* we will multiply by this by 10 to allow units of 0.1 volts
*/
value = value >> 6; // divide first by 2^6
value = value * 37.5;
value = value >> 9; // ...and later by 2^9...to prevent overflow during multiplication
return value;
#endif // CC2430
#if defined HAL_MCU_MSP430
uint16 value;
ADC12CTL0 = ADC12ON+SHT0_2+REFON; // Turn on and set up ADC12
ADC12CTL1 = SHP; // Use sampling timer
ADC12MCTL0 = SREF_1+INCH_11; // Vr+=Vref+
ADC12CTL0 |= ENC | ADC12SC; // Start conversion
while ((ADC12IFG & BIT0)==0);
value = ADC12MEM0;
/*
* value now contains measurement of AVcc/2
* value is in range 0 to 4095 indicating voltage from 0 to 1.5V
* voltage = (value*2*1.5)/4095 volts
* we will multiply by this by 10 to allow units of 0.1 volts
*/
value = value >> 1; // value is now in range of 0 to 2048
value = value * 30;
value = value >> 11;
return ( value );
#endif // MSP430
#if defined HAL_MCU_AVR
// If platform doesnt support a battery sensor, just return random value
uint8 value;
value = 20 + ( osal_rand() & 0x000F );
return ( value );
#endif // AVR
}
/******************************************************************************
* @fn myApp_ReadTemperature
*
* @brief Reports temperature sensor reading
*
* @param
*
* @return
*/
uint8 myApp_ReadTemperature( void )
{
#if defined HAL_MCU_CC2430
uint16 value;
/* Clear ADC interrupt flag */
ADCIF = 0;
ADCCON3 = (HAL_ADC_REF_125V | HAL_ADC_DEC_512 | HAL_ADC_CHN_TEMP);
/* Wait for the conversion to finish */
while ( !ADCIF );
/* Get the result */
value = ADCL;
value |= ((uint16) ADCH) << 8;
/*
* value ranges from 0 to 0x8000 indicating 0V and 1.25V
* VOLTAGE_AT_TEMP_ZERO = 0.743 V = 19477
* TEMP_COEFFICIENT = 0.0024 V/C = 62.9 /C
* These parameters are typical values and need to be calibrated
* See the datasheet for the appropriate chip for more details
* also, the math below may not be very accurate
*/
#define VOLTAGE_AT_TEMP_ZERO 19477 // 0.743 V
#define TEMP_COEFFICIENT 62.9 // 0.0024 V/C
// limit min temp to 0 C
if ( value < VOLTAGE_AT_TEMP_ZERO )
value = VOLTAGE_AT_TEMP_ZERO;
value = value - VOLTAGE_AT_TEMP_ZERO;
// limit max temp to 99 C
if ( value > TEMP_COEFFICIENT * 99 )
value = TEMP_COEFFICIENT * 99;
return ( (uint8)(value/TEMP_COEFFICIENT) );
#endif // CC2430
#if defined HAL_MCU_MSP430
uint16 value;
ADC12CTL0 = ADC12ON+SHT0_7+REFON; // Turn on and set up ADC12
ADC12CTL1 = SHP; // Use sampling timer
ADC12MCTL0 = SREF_1+INCH_10; // Vr+=Vref+
ADC12CTL0 |= ENC | ADC12SC; // Start conversion
while ((ADC12IFG & BIT0)==0);
value = ADC12MEM0;
/*
* value ranges from 0 to 0x0FFF indicating 0V and 1.5V
* VOLTAGE_AT_TEMP_ZERO = 0.986 V = 2692
* TEMP_COEFFICIENT = 0.00355 V/C = 9.69 /C
* These parameters are typical values and need to be calibrated
* See the datasheet for the appropriate chip for more details
* also, the math below is not very accurate
*/
#define VOLTAGE_AT_TEMP_ZERO 2692 // 0.986 V
#define TEMP_COEFFICIENT 9.69 // 0.00355 V/C
// limit min temp to 0 C
if ( value < VOLTAGE_AT_TEMP_ZERO )
value = VOLTAGE_AT_TEMP_ZERO;
value = value - VOLTAGE_AT_TEMP_ZERO;
// limit max temp to 99 C
if ( value > TEMP_COEFFICIENT * 99 )
value = TEMP_COEFFICIENT * 99;
return ( (uint8)(value/TEMP_COEFFICIENT) );
#endif // MSP430
#if defined HAL_MCU_AVR
// If platform doesnt support a temperature sensor, just return random value
uint8 value;
value = 20 + ( osal_rand() & 0x000F );
return ( value );
#endif // AVR
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -