📄 timer.vhd
字号:
--Copyright (C) 1991-2002 Altera Corporation
--Any megafunction design, and related net list (encrypted or decrypted),
--support information, device programming or simulation file, and any other
--associated documentation or information provided by Altera or a partner
--under Altera's Megafunction Partnership Program may be used only to
--program PLD devices (but not masked PLD devices) from Altera. Any other
--use of such megafunction design, net list, support information, device
--programming or simulation file, or any other related documentation or
--information is prohibited for any other purpose, including, but not
--limited to modification, reverse engineering, de-compiling, or use with
--any other silicon devices, unless such use is explicitly licensed under
--a separate agreement with Altera or a megafunction partner. Title to
--the intellectual property, including patents, copyrights, trademarks,
--trade secrets, or maskworks, embodied in any such megafunction design,
--net list, support information, device programming or simulation file, or
--any other related documentation or information provided by Altera or a
--megafunction partner, remains with Altera, the megafunction partner, or
--their respective licensors. No other licenses, including any licenses
--needed under any third party's intellectual property, are provided herein.
--Copying or modifying any file, or portion thereof, to which this notice
--is attached violates this copyright.
library altera_vhdl_support;
use altera_vhdl_support.altera_vhdl_support_lib.all;
library ieee;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity timer is
port (
-- inputs:
signal address : IN STD_LOGIC_VECTOR (2 DOWNTO 0);
signal chipselect : IN STD_LOGIC;
signal clk : IN STD_LOGIC;
signal reset_n : IN STD_LOGIC;
signal write_n : IN STD_LOGIC;
signal writedata : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
-- outputs:
signal irq : OUT STD_LOGIC;
signal readdata : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
);
end entity timer;
architecture europa of timer is
signal clk_en : STD_LOGIC;
signal control_continuous : STD_LOGIC;
signal control_interrupt_enable : STD_LOGIC;
signal control_register : STD_LOGIC_VECTOR (3 DOWNTO 0);
signal control_wr_strobe : STD_LOGIC;
signal counter_is_running : STD_LOGIC;
signal counter_is_zero : STD_LOGIC;
signal counter_load_value : STD_LOGIC_VECTOR (31 DOWNTO 0);
signal counter_snapshot : STD_LOGIC_VECTOR (31 DOWNTO 0);
signal delayed_unxxx40 : STD_LOGIC;
signal do_start_counter : STD_LOGIC;
signal do_stop_counter : STD_LOGIC;
signal force_reload : STD_LOGIC;
signal internal_counter : STD_LOGIC_VECTOR (31 DOWNTO 0);
signal period_h_register : STD_LOGIC_VECTOR (15 DOWNTO 0);
signal period_h_wr_strobe : STD_LOGIC;
signal period_l_register : STD_LOGIC_VECTOR (15 DOWNTO 0);
signal period_l_wr_strobe : STD_LOGIC;
signal read_mux_out : STD_LOGIC_VECTOR (15 DOWNTO 0);
signal snap_h_wr_strobe : STD_LOGIC;
signal snap_l_wr_strobe : STD_LOGIC;
signal snap_read_value : STD_LOGIC_VECTOR (31 DOWNTO 0);
signal snap_strobe : STD_LOGIC;
signal start_strobe : STD_LOGIC;
signal status_wr_strobe : STD_LOGIC;
signal stop_strobe : STD_LOGIC;
signal timeout_event : STD_LOGIC;
signal timeout_occurred : STD_LOGIC;
begin
clk_en <= '1';
process (clk, reset_n)
begin
if reset_n = '0' then
internal_counter <= "00000000000000000100111000100000";
elsif clk'event and clk = '1' then
if ((counter_is_running OR force_reload)) = '1' then
if ((counter_is_zero OR force_reload)) = '1' then
internal_counter <= counter_load_value;
else
internal_counter <= internal_counter - "00000000000000000000000000000001";
end if;
end if;
end if;
end process;
counter_is_zero <= to_std_logic((internal_counter = "00000000000000000000000000000000"));
counter_load_value <= period_h_register & period_l_register;
process (clk, reset_n)
begin
if reset_n = '0' then
force_reload <= '0';
elsif clk'event and clk = '1' then
if clk_en = '1' then
force_reload <= period_h_wr_strobe OR period_l_wr_strobe;
end if;
end if;
end process;
do_start_counter <= start_strobe;
do_stop_counter <= stop_strobe OR force_reload OR (counter_is_zero AND NOT control_continuous);
process (clk, reset_n)
begin
if reset_n = '0' then
counter_is_running <= '0';
elsif clk'event and clk = '1' then
if clk_en = '1' then
if do_start_counter = '1' then
counter_is_running <= '1';
elsif do_stop_counter = '1' then
counter_is_running <= '0';
end if;
end if;
end if;
end process;
--delayed_unxxx40, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
delayed_unxxx40 <= '0';
elsif clk'event and clk = '1' then
if clk_en = '1' then
delayed_unxxx40 <= counter_is_zero;
end if;
end if;
end process;
timeout_event <= counter_is_zero AND NOT delayed_unxxx40;
process (clk, reset_n)
begin
if reset_n = '0' then
timeout_occurred <= '0';
elsif clk'event and clk = '1' then
if clk_en = '1' then
if status_wr_strobe = '1' then
timeout_occurred <= '0';
elsif timeout_event = '1' then
timeout_occurred <= '1';
end if;
end if;
end if;
end process;
irq <= timeout_occurred AND control_interrupt_enable;
read_mux_out <= ((((((Std_Logic_Vector'(A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010"))) & A_ToStdLogicVector(to_std_logic((address = "010")))) AND period_l_register)) OR ((Std_Logic_Vector'(A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011"))) & A_ToStdLogicVector(to_std_logic((address = "011")))) AND period_h_register))) OR ((Std_Logic_Vector'(A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100"))) & A_ToStdLogicVector(to_std_logic((address = "100")))) AND snap_read_value(15 DOWNTO 0)))) OR ((Std_Logic_Vector'(A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101"))) & A_ToStdLogicVector(to_std_logic((address = "101")))) AND snap_read_value(31 DOWNTO 16)))) OR ((Std_Logic_Vector'(A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001"))) & A_ToStdLogicVector(to_std_logic((address = "001")))) AND ("000000000000" & control_register)))) OR ((Std_Logic_Vector'(A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000"))) & A_ToStdLogicVector(to_std_logic((address = "000")))) AND ("00000000000000" & Std_Logic_Vector'(A_ToStdLogicVector(counter_is_running) & A_ToStdLogicVector(timeout_occurred)))));
process (clk, reset_n)
begin
if reset_n = '0' then
readdata <= "0000000000000000";
elsif clk'event and clk = '1' then
if clk_en = '1' then
readdata <= read_mux_out;
end if;
end if;
end process;
period_l_wr_strobe <= to_std_logic((((((chipselect AND NOT write_n) = '1') AND (address = "010")))));
period_h_wr_strobe <= to_std_logic((((((chipselect AND NOT write_n) = '1') AND (address = "011")))));
process (clk, reset_n)
begin
if reset_n = '0' then
period_l_register <= "0100111000100000";
elsif clk'event and clk = '1' then
if period_l_wr_strobe = '1' then
period_l_register <= writedata;
end if;
end if;
end process;
process (clk, reset_n)
begin
if reset_n = '0' then
period_h_register <= "0000000000000000";
elsif clk'event and clk = '1' then
if period_h_wr_strobe = '1' then
period_h_register <= writedata;
end if;
end if;
end process;
snap_l_wr_strobe <= to_std_logic((((((chipselect AND NOT write_n) = '1') AND (address = "100")))));
snap_h_wr_strobe <= to_std_logic((((((chipselect AND NOT write_n) = '1') AND (address = "101")))));
snap_strobe <= snap_l_wr_strobe OR snap_h_wr_strobe;
process (clk, reset_n)
begin
if reset_n = '0' then
counter_snapshot <= "00000000000000000000000000000000";
elsif clk'event and clk = '1' then
if snap_strobe = '1' then
counter_snapshot <= internal_counter;
end if;
end if;
end process;
snap_read_value <= counter_snapshot;
control_wr_strobe <= to_std_logic((((((chipselect AND NOT write_n) = '1') AND (address = "001")))));
process (clk, reset_n)
begin
if reset_n = '0' then
control_register <= "0000";
elsif clk'event and clk = '1' then
if control_wr_strobe = '1' then
control_register <= writedata(3 DOWNTO 0);
end if;
end if;
end process;
stop_strobe <= writedata(3) AND control_wr_strobe;
start_strobe <= writedata(2) AND control_wr_strobe;
control_continuous <= control_register(1);
control_interrupt_enable <= control_register(0);
status_wr_strobe <= to_std_logic((((((chipselect AND NOT write_n) = '1') AND (address = "000")))));
end europa;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -