📄 uart.vhd
字号:
--cyclone32: uart.vhd
--manual changes are highlighted by '###'
--Copyright (C) 1991-2002 Altera Corporation
--Any megafunction design, and related net list (encrypted or decrypted),
--support information, device programming or simulation file, and any other
--associated documentation or information provided by Altera or a partner
--under Altera's Megafunction Partnership Program may be used only to
--program PLD devices (but not masked PLD devices) from Altera. Any other
--use of such megafunction design, net list, support information, device
--programming or simulation file, or any other related documentation or
--information is prohibited for any other purpose, including, but not
--limited to modification, reverse engineering, de-compiling, or use with
--any other silicon devices, unless such use is explicitly licensed under
--a separate agreement with Altera or a megafunction partner. Title to
--the intellectual property, including patents, copyrights, trademarks,
--trade secrets, or maskworks, embodied in any such megafunction design,
--net list, support information, device programming or simulation file, or
--any other related documentation or information provided by Altera or a
--megafunction partner, remains with Altera, the megafunction partner, or
--their respective licensors. No other licenses, including any licenses
--needed under any third party's intellectual property, are provided herein.
--Copying or modifying any file, or portion thereof, to which this notice
--is attached violates this copyright.
library altera_vhdl_support;
use altera_vhdl_support.altera_vhdl_support_lib.all;
library ieee;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity uart_tx is
port (
-- inputs:
signal baud_divisor : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
signal begintransfer : IN STD_LOGIC;
signal clk : IN STD_LOGIC;
signal clk_en : IN STD_LOGIC;
signal do_force_break : IN STD_LOGIC;
signal reset_n : IN STD_LOGIC;
signal status_wr_strobe : IN STD_LOGIC;
signal tx_data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
signal tx_wr_strobe : IN STD_LOGIC;
-- outputs:
signal tx_overrun : OUT STD_LOGIC;
signal tx_ready : OUT STD_LOGIC;
signal tx_shift_empty : OUT STD_LOGIC;
signal txd : OUT STD_LOGIC
);
end entity uart_tx;
architecture europa of uart_tx is
signal baud_clk_en : STD_LOGIC;
signal baud_rate_counter : STD_LOGIC_VECTOR (7 DOWNTO 0);
signal baud_rate_counter_is_zero : STD_LOGIC;
signal do_load_shifter : STD_LOGIC;
signal do_shift : STD_LOGIC;
signal internal_tx_ready : STD_LOGIC;
signal pre_txd : STD_LOGIC;
signal shift_done : STD_LOGIC;
signal tx_load_val : STD_LOGIC_VECTOR (9 DOWNTO 0);
signal tx_shift_reg_out : STD_LOGIC;
signal tx_shift_register_contents : STD_LOGIC_VECTOR (9 DOWNTO 0);
signal tx_wr_strobe_onset : STD_LOGIC;
signal unxxx48_in : STD_LOGIC_VECTOR (9 DOWNTO 0);
signal unxxx48_out : STD_LOGIC_VECTOR (9 DOWNTO 0);
begin
tx_wr_strobe_onset <= tx_wr_strobe AND begintransfer;
tx_load_val <= Std_Logic_Vector'(A_ToStdLogicVector('1') & tx_data & A_ToStdLogicVector('0'));
shift_done <= NOT (or_reduce(tx_shift_register_contents));
process (clk, reset_n)
begin
if reset_n = '0' then
do_load_shifter <= '0';
elsif clk'event and clk = '1' then
if clk_en = '1' then
do_load_shifter <= (NOT internal_tx_ready) AND shift_done;
end if;
end if;
end process;
process (clk, reset_n)
begin
if reset_n = '0' then
internal_tx_ready <= '1';
elsif clk'event and clk = '1' then
if clk_en = '1' then
if tx_wr_strobe_onset = '1' then
internal_tx_ready <= '0';
elsif do_load_shifter = '1' then
internal_tx_ready <= '1';
end if;
end if;
end if;
end process;
process (clk, reset_n)
begin
if reset_n = '0' then
tx_overrun <= '0';
elsif clk'event and clk = '1' then
if clk_en = '1' then
if status_wr_strobe = '1' then
tx_overrun <= '0';
elsif ((NOT internal_tx_ready AND tx_wr_strobe_onset)) = '1' then
tx_overrun <= '1';
end if;
end if;
end if;
end process;
process (clk, reset_n)
begin
if reset_n = '0' then
tx_shift_empty <= '1';
elsif clk'event and clk = '1' then
if clk_en = '1' then
tx_shift_empty <= internal_tx_ready AND shift_done;
end if;
end if;
end process;
process (clk, reset_n)
begin
if reset_n = '0' then
baud_rate_counter <= "00000000";
elsif clk'event and clk = '1' then
if clk_en = '1' then
if ((baud_rate_counter_is_zero OR do_load_shifter)) = '1' then
baud_rate_counter <= baud_divisor;
else
baud_rate_counter <= baud_rate_counter - "00000001";
end if;
end if;
end if;
end process;
baud_rate_counter_is_zero <= to_std_logic((baud_rate_counter = "00000000"));
process (clk, reset_n)
begin
if reset_n = '0' then
baud_clk_en <= '0';
elsif clk'event and clk = '1' then
if clk_en = '1' then
baud_clk_en <= baud_rate_counter_is_zero;
end if;
end if;
end process;
do_shift <= baud_clk_en AND (NOT shift_done) AND (NOT do_load_shifter);
process (clk, reset_n)
begin
if reset_n = '0' then
pre_txd <= '1';
elsif clk'event and clk = '1' then
if ((NOT shift_done)) = '1' then
pre_txd <= tx_shift_reg_out;
end if;
end if;
end process;
process (clk, reset_n)
begin
if reset_n = '0' then
txd <= '1';
elsif clk'event and clk = '1' then
if clk_en = '1' then
txd <= pre_txd AND NOT do_force_break;
end if;
end if;
end process;
--_reg, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
unxxx48_out <= "0000000000";
elsif clk'event and clk = '1' then
if clk_en = '1' then
unxxx48_out <= unxxx48_in;
end if;
end if;
end process;
unxxx48_in <= A_WE_StdLogicVector ((do_load_shifter = '1'),tx_load_val,A_WE_StdLogicVector ((do_shift = '1'),Std_Logic_Vector'(A_ToStdLogicVector('0') & unxxx48_out(9 DOWNTO 1)),unxxx48_out));
tx_shift_register_contents <= unxxx48_out;
tx_shift_reg_out <= unxxx48_out(0);
--vhdl renameroo for output signals
tx_ready <= internal_tx_ready;
end europa;
library altera_vhdl_support;
use altera_vhdl_support.altera_vhdl_support_lib.all;
library ieee;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity uart_rx_stimulus_source is
port (
-- inputs:
signal baud_divisor : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
signal clk : IN STD_LOGIC;
signal clk_en : IN STD_LOGIC;
signal reset_n : IN STD_LOGIC;
signal rx_char_ready : IN STD_LOGIC;
signal rxd : IN STD_LOGIC;
-- outputs:
signal source_rxd : OUT STD_LOGIC
);
end entity uart_rx_stimulus_source;
architecture europa of uart_rx_stimulus_source is
component uart_tx is
port (
-- inputs:
signal baud_divisor : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
signal begintransfer : IN STD_LOGIC;
signal clk : IN STD_LOGIC;
signal clk_en : IN STD_LOGIC;
signal do_force_break : IN STD_LOGIC;
signal reset_n : IN STD_LOGIC;
signal status_wr_strobe : IN STD_LOGIC;
signal tx_data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
signal tx_wr_strobe : IN STD_LOGIC;
-- outputs:
signal tx_overrun : OUT STD_LOGIC;
signal tx_ready : OUT STD_LOGIC;
signal tx_shift_empty : OUT STD_LOGIC;
signal txd : OUT STD_LOGIC
);
end component uart_tx;
component uart_rx_stimulus_source_character_source_rom_module is
port (
-- inputs:
signal address : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
signal clk : IN STD_LOGIC;
-- outputs:
signal q : OUT STD_LOGIC_VECTOR (7 DOWNTO 0)
);
end component uart_rx_stimulus_source_character_source_rom_module;
signal aboriginal_start_pulse : STD_LOGIC;
signal address : STD_LOGIC_VECTOR (9 DOWNTO 0);
signal address_is_last : STD_LOGIC;
signal d1_aboriginal_start_pulse : STD_LOGIC;
signal d1_stim_data : STD_LOGIC_VECTOR (7 DOWNTO 0);
signal d2_aboriginal_start_pulse : STD_LOGIC;
signal d3_aboriginal_start_pulse : STD_LOGIC;
signal d4_aboriginal_start_pulse : STD_LOGIC;
signal d5_aboriginal_start_pulse : STD_LOGIC;
signal d6_aboriginal_start_pulse : STD_LOGIC;
signal d7_aboriginal_start_pulse : STD_LOGIC;
signal d8_aboriginal_start_pulse : STD_LOGIC;
signal d9_aboriginal_start_pulse : STD_LOGIC;
signal delayed_unxxx81 : STD_LOGIC;
signal do_send_stim_data : STD_LOGIC;
signal internal_source_rxd : STD_LOGIC;
signal pickup_pulse : STD_LOGIC;
signal startup_pulse : STD_LOGIC;
signal stim_data : STD_LOGIC_VECTOR (7 DOWNTO 0);
signal unused_empty : STD_LOGIC;
signal unused_overrun : STD_LOGIC;
signal unused_ready : STD_LOGIC;
constant simulating1 : boolean :=
-- exemplar translate_off
--###{
-- true OR
--###}
-- exemplar translate_on
false;
begin
--exemplar translate_off
sim_generate:if simulating1 generate
begin
stimulus_transmitter : uart_tx
port map(
tx_shift_empty => unused_empty,
txd => internal_source_rxd,
tx_overrun => unused_overrun,
tx_ready => unused_ready,
clk_en => clk_en,
status_wr_strobe => '0',
tx_wr_strobe => '1',
baud_divisor => baud_divisor,
clk => clk,
do_force_break => '0',
tx_data => d1_stim_data,
begintransfer => do_send_stim_data,
reset_n => reset_n
);
process (clk, reset_n)
begin
if reset_n = '0' then
d1_stim_data <= "00000000";
elsif clk'event and clk = '1' then
if do_send_stim_data = '1' then
d1_stim_data <= stim_data;
end if;
end if;
end process;
uart_rx_stimulus_source_character_source_rom : uart_rx_stimulus_source_character_source_rom_module
port map(
q => stim_data,
address => address,
clk => clk
);
process (clk, reset_n)
begin
if reset_n = '0' then
address <= "0000000000";
elsif clk'event and clk = '1' then
if do_send_stim_data = '1' then
address <= address + "0000000001";
end if;
end if;
end process;
address_is_last <= to_std_logic((stim_data = "00000000"));
--delayed_unxxx81, which is an e_register
process (clk, reset_n)
begin
if reset_n = '0' then
delayed_unxxx81 <= '0';
elsif clk'event and clk = '1' then
if clk_en = '1' then
delayed_unxxx81 <= rx_char_ready;
end if;
end if;
end process;
pickup_pulse <= NOT rx_char_ready AND delayed_unxxx81;
process (clk, reset_n)
begin
if reset_n = '0' then
aboriginal_start_pulse <= '1';
elsif clk'event and clk = '1' then
if clk_en = '1' then
aboriginal_start_pulse <= '0';
end if;
end if;
end process;
process (clk, reset_n)
begin
if reset_n = '0' then
d1_aboriginal_start_pulse <= '0';
d2_aboriginal_start_pulse <= '0';
d3_aboriginal_start_pulse <= '0';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -