⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 regressiontests.java

📁 大家打开看看啊, 很有用的东西
💻 JAVA
字号:
/* ======================================
 * JFreeChart : a free Java chart library
 * ======================================
 *
 * Project Info:  http://www.jfree.org/jfreechart/index.html
 * Project Lead:  David Gilbert (david.gilbert@object-refinery.com);
 *
 * (C) Copyright 2000-2003, by Object Refinery Limited and Contributors.
 *
 * This library is free software; you can redistribute it and/or modify it under the terms
 * of the GNU Lesser General Public License as published by the Free Software Foundation;
 * either version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License along with this
 * library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 * Boston, MA 02111-1307, USA.
 *
 * --------------------
 * RegressionTests.java
 * --------------------
 * (C) Copyright 2002, 2003 by Object Refinery Limited and Contributors.
 *
 * Original Author:  David Gilbert (for Object Refinery Limited);
 * Contributor(s):   -;
 *
 * $Id: RegressionTests.java,v 1.3 2003/06/12 16:54:32 mungady Exp $
 *
 * Changes
 * -------
 * 30-Sep-2002 : Version 1 (DG);
 * 17-Oct-2002 : Fixed errors reported by Checkstyle (DG);
 *
 */

package org.jfree.data.junit;

import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

import org.jfree.data.Regression;
import org.jfree.data.XYDataset;
import org.jfree.data.XYSeries;
import org.jfree.data.XYSeriesCollection;

/**
 * Tests for the {@link Regression} class.
 *
 * @author David Gilbert
 */
public class RegressionTests extends TestCase {

    /**
     * Returns the tests as a test suite.
     *
     * @return the test suite.
     */
    public static Test suite() {
        return new TestSuite(RegressionTests.class);
    }

    /**
     * Constructs a new set of tests.
     *
     * @param  name the name of the tests.
     */
    public RegressionTests(String name) {
        super(name);
    }

    /**
     * Checks the results of an OLS regression on sample dataset 1.
     */
    public void testOLSRegression1a() {

        double[][] data = createSampleData1();
        double[] result1 = Regression.getOLSRegression(data);
        assertEquals(.25680930, result1[0], 0.0000001);
        assertEquals(0.72792106, result1[1], 0.0000001);

    }

    /**
     * Checks the results of an OLS regression on sample dataset 1 AFTER converting it to
     * an XYSeries.
     */
    public void testOLSRegression1b() {

        double[][] data = createSampleData1();

        XYSeries series = new XYSeries("Test");
        for (int i = 0; i < 11; i++) {
            series.add(data[i][0], data[i][1]);
        }
        XYDataset ds = new XYSeriesCollection(series);
        double[] result2 = Regression.getOLSRegression(ds, 0);

        assertEquals(.25680930, result2[0], 0.0000001);
        assertEquals(0.72792106, result2[1], 0.0000001);

    }

    /**
     * Checks the results of a power regression on sample dataset 1.
     */
    public void testPowerRegression1a() {

        double[][] data = createSampleData1();
        double[] result = Regression.getPowerRegression(data);
        assertEquals(0.91045813, result[0], 0.0000001);
        assertEquals(0.88918346, result[1], 0.0000001);

    }

    /**
     * Checks the results of a power regression on sample dataset 1 AFTER converting it to
     * an XYSeries.
     */
    public void testPowerRegression1b() {

        double[][] data = createSampleData1();

        XYSeries series = new XYSeries("Test");
        for (int i = 0; i < 11; i++) {
            series.add(data[i][0], data[i][1]);
        }
        XYDataset ds = new XYSeriesCollection(series);
        double[] result = Regression.getPowerRegression(ds, 0);

        assertEquals(0.91045813, result[0], 0.0000001);
        assertEquals(0.88918346, result[1], 0.0000001);

    }

    /**
     * Checks the results of an OLS regression on sample dataset 2.
     */
    public void testOLSRegression2a() {

        double[][] data = createSampleData2();
        double[] result = Regression.getOLSRegression(data);
        assertEquals(53.9729697, result[0], 0.0000001);
        assertEquals(-4.1823030, result[1], 0.0000001);

    }

    /**
     * Checks the results of an OLS regression on sample dataset 2 AFTER converting it to
     * an XYSeries.
     */
    public void testOLSRegression2b() {

        double[][] data = createSampleData2();

        XYSeries series = new XYSeries("Test");
        for (int i = 0; i < 10; i++) {
            series.add(data[i][0], data[i][1]);
        }
        XYDataset ds = new XYSeriesCollection(series);
        double[] result = Regression.getOLSRegression(ds, 0);

        assertEquals(53.9729697, result[0], 0.0000001);
        assertEquals(-4.1823030, result[1], 0.0000001);

    }

    /**
     * Checks the results of a power regression on sample dataset 2.
     */
    public void testPowerRegression2a() {

        double[][] data = createSampleData2();
        double[] result = Regression.getPowerRegression(data);
        assertEquals(106.1241681, result[0], 0.0000001);
        assertEquals(-0.8466615, result[1], 0.0000001);

    }

    /**
     * Checks the results of a power regression on sample dataset 2 AFTER converting it to
     * an XYSeries.
     */
    public void testPowerRegression2b() {

        double[][] data = createSampleData2();

        XYSeries series = new XYSeries("Test");
        for (int i = 0; i < 10; i++) {
            series.add(data[i][0], data[i][1]);
        }
        XYDataset ds = new XYSeriesCollection(series);
        double[] result = Regression.getPowerRegression(ds, 0);

        assertEquals(106.1241681, result[0], 0.0000001);
        assertEquals(-0.8466615, result[1], 0.0000001);

    }

    /**
     * Creates and returns a sample dataset.
     * <P>
     * The data is taken from Table 11.2, page 313 of "Understanding Statistics" by Ott and
     * Mendenhall (Duxbury Press).
     *
     * @return the sample data.
     */
    private double[][] createSampleData1() {

        double[][] result = new double[11][2];

        result[0][0] = 2.00;
        result[0][1] = 1.60;
        result[1][0] = 2.25;
        result[1][1] = 2.00;
        result[2][0] = 2.60;
        result[2][1] = 1.80;
        result[3][0] = 2.65;
        result[3][1] = 2.80;
        result[4][0] = 2.80;
        result[4][1] = 2.10;
        result[5][0] = 3.10;
        result[5][1] = 2.00;
        result[6][0] = 2.90;
        result[6][1] = 2.65;
        result[7][0] = 3.25;
        result[7][1] = 2.25;
        result[8][0] = 3.30;
        result[8][1] = 2.60;
        result[9][0] = 3.60;
        result[9][1] = 3.00;
        result[10][0] = 3.25;
        result[10][1] = 3.10;

        return result;

    }

    /**
     * Creates a sample data set.
     *
     * @return the sample data.
     */
    private double[][] createSampleData2() {

        double[][] result = new double[10][2];

        result[0][0] = 2;
        result[0][1] = 56.27;
        result[1][0] = 3;
        result[1][1] = 41.32;
        result[2][0] = 4;
        result[2][1] = 31.45;
        result[3][0] = 5;
        result[3][1] = 30.05;
        result[4][0] = 6;
        result[4][1] = 24.69;
        result[5][0] = 7;
        result[5][1] = 19.78;
        result[6][0] = 8;
        result[6][1] = 20.94;
        result[7][0] = 9;
        result[7][1] = 16.73;
        result[8][0] = 10;
        result[8][1] = 14.21;
        result[9][0] = 11;
        result[9][1] = 12.44;

        return result;

    }

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -