📄 periph.c
字号:
#pragma NOIV // Do not generate interrupt vectors
//-----------------------------------------------------------------------------
// File: periph.c
// Contents: Hooks required to implement USB peripheral function.
//
// Copyright (c) 1997 AnchorChips, Inc. All rights reserved
//-----------------------------------------------------------------------------
#include <ezusb.h>
#include <ezregs.h>
extern BOOL GotSUD; // Received setup data flag
extern BOOL Sleep;
extern BOOL Rwuen;
extern BOOL Selfpwr;
BYTE Configuration; // Current configuration
BYTE AlternateSetting; // Alternate settings
BYTE suspCount;
//-----------------------------------------------------------------------------
// Task Dispatcher hooks
// The following hooks are called by the task dispatcher.
//-----------------------------------------------------------------------------
void TD_Init(void) // Called once at startup
{
// Enable endpoints 0-7 IN and OUT
IN07VAL |= bmEP1 + bmEP2 + bmEP3 + bmEP4 + bmEP5 + bmEP6 + bmEP7;
//IN07VAL |= bmEP1;
OUT07VAL |= bmEP1 + bmEP2 + bmEP3 + bmEP4 + bmEP5 + bmEP6 + bmEP7;
// OUT07VAL |= bmEP1;
// Enable interrupts for the OUT endpoints
OUT07IEN |= bmEP1 + bmEP2 + bmEP3 + bmEP4 + bmEP5 + bmEP6 + bmEP7;
// OUT07IEN |= bmEP1;
suspCount = 1;
OEA = 0xFF;
Rwuen = TRUE; // Enable remote-wakeup
}
void TD_Poll(void) // Called repeatedly while the device is idle
{
}
BOOL TD_Suspend(void) // Called before the device goes into suspend mode
{
return(TRUE);
}
BOOL TD_Resume(void) // Called after the device resumes
{
return(TRUE);
}
//-----------------------------------------------------------------------------
// Device Request hooks
// The following hooks are called by the end point 0 device request parser.
//-----------------------------------------------------------------------------
BOOL DR_GetDescriptor(void)
{
return(TRUE);
}
BOOL DR_SetConfiguration(void) // Called when a Set Configuration command is received
{
Configuration = SETUPDAT[2];
return(TRUE); // Handled by user code
}
BOOL DR_GetConfiguration(void) // Called when a Get Configuration command is received
{
IN0BUF[0] = Configuration;
EZUSB_SET_EP_BYTES(IN0BUF_ID,1);
return(TRUE); // Handled by user code
}
BOOL DR_SetInterface(void) // Called when a Set Interface command is received
{
AlternateSetting = SETUPDAT[2];
return(TRUE); // Handled by user code
}
BOOL DR_GetInterface(void) // Called when a Set Interface command is received
{
IN0BUF[0] = AlternateSetting;
EZUSB_SET_EP_BYTES(IN0BUF_ID,1);
return(TRUE); // Handled by user code
}
BOOL DR_GetStatus(void)
{
return(TRUE);
}
BOOL DR_ClearFeature(void)
{
return(TRUE);
}
BOOL DR_SetFeature(void)
{
return(TRUE);
}
#define EZUSB_UNARM_EP(ep_id) EPIO[ep_id].cntrl = bmEPBUSY
BOOL DR_VendorCmnd(void)
{
return(TRUE);
}
//-----------------------------------------------------------------------------
// USB Interrupt Handlers
// The following functions are called by the USB interrupt jump table.
//-----------------------------------------------------------------------------
// Setup Data Available Interrupt Handler
void ISR_Sudav(void) interrupt 0
{
GotSUD = TRUE; // Set flag
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUDAV; // Clear SUDAV IRQ
}
// Setup Token Interrupt Handler
void ISR_Sutok(void) interrupt 0
{
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUTOK; // Clear SUTOK IRQ
}
void ISR_Sof(void) interrupt 0
{
EZUSB_IRQ_CLEAR();
USBIRQ = bmSOF; // Clear SOF IRQ
}
void ISR_Ures(void) interrupt 0
{
//
// Arm all of the OUT endpoints so they can accept data
//
EPIO[OUT1BUF_ID].bytes = 0;
EPIO[OUT2BUF_ID].bytes = 0;
EPIO[OUT3BUF_ID].bytes = 0;
EPIO[OUT4BUF_ID].bytes = 0;
EPIO[OUT5BUF_ID].bytes = 0;
EPIO[OUT6BUF_ID].bytes = 0;
EPIO[OUT7BUF_ID].bytes = 0;
EZUSB_IRQ_CLEAR();
USBIRQ = bmURES; // Clear URES IRQ
}
void ISR_IBN(void) interrupt 0
{
// ISR for the IN Bulk NAK (IBN) interrupt.
}
void ISR_Susp(void) interrupt 0
{
Sleep = TRUE;
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUSP;
}
void ISR_Ep0in(void) interrupt 0
{
}
void ISR_Ep0out(void) interrupt 0
{
}
void ISR_Ep1in(void) interrupt 0
{
}
void ISR_Ep1out(void) interrupt 0
{
int i;
//
// workaround to cover the case where the host thinks the
// previous IN completed but EZ-USB didn't receive a valid
// handshake (i.e. the ACK was scrambled). If we have
// received new OUT data (which we have, because we're in this
// ISR) but the corresponding IN endpoint is still busy, then
// we know we missed the handshake. The solution is to flip
// the data toggle and proceed with the new data.
//
// NOTE: This workaround is specific to this particular loopback
// application and should not be included in normal endpoint handling
// firmware.
//
if (EPIO[IN1BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN1BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT1BC; i++)
{
IN1BUF[i] = OUT1BUF[i];
}
// Arm the IN endpoint
IN1BC = OUT1BC;
// Arm the OUT so it can receive the next packet
OUT1BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP1;
}
void ISR_Ep2in(void) interrupt 0
{
}
void ISR_Ep2out(void) interrupt 0
{
/*int i;
if (EPIO[IN2BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN2BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT2BC; i++)
{
IN2BUF[i] = ~OUT2BUF[i];
}
// Arm the IN endpoint
IN2BC = i;
// Arm the OUT so it can receive the next packet
OUT2BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP2;*/
}
void ISR_Ep3in(void) interrupt 0
{
}
void ISR_Ep3out(void) interrupt 0
{
/* int i;
if (EPIO[IN3BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN3BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT3BC; i++)
{
IN3BUF[i] = ~OUT3BUF[i];
}
// Arm the IN endpoint
IN3BC = i;
// Arm the OUT so it can receive the next packet
OUT3BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP3;*/
}
void ISR_Ep4in(void) interrupt 0
{
}
void ISR_Ep4out(void) interrupt 0
{
/* int i;
if (EPIO[IN4BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN4BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT4BC; i++)
{
IN4BUF[i] = ~OUT4BUF[i];
}
// Arm the IN endpoint
IN4BC = i;
// Arm the OUT so it can receive the next packet
OUT4BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP4;*/
}
void ISR_Ep5in(void) interrupt 0
{
}
void ISR_Ep5out(void) interrupt 0
{
/*int i;
if (EPIO[IN5BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN5BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT5BC; i++)
{
IN5BUF[i] = ~OUT5BUF[i];
}
// Arm the IN endpoint
IN5BC = i;
// Arm the OUT so it can receive the next packet
OUT5BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP5;*/
}
void ISR_Ep6in(void) interrupt 0
{
}
void ISR_Ep6out(void) interrupt 0
{
/*int i;
if (EPIO[IN6BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN6BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT6BC; i++)
{
IN6BUF[i] = ~OUT6BUF[i];
}
// Arm the IN endpoint
IN6BC = i;
// Arm the OUT so it can receive the next packet
OUT6BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP6;*/
}
void ISR_Ep7in(void) interrupt 0
{
}
void ISR_Ep7out(void) interrupt 0
{
/*int i;
if (EPIO[IN7BUF_ID].cntrl & bmEPBUSY)
{
TOGCTL = 0x08 | IN7BUF_ID;
WRITEDELAY();
if (TOGCTL & 0x80)
TOGCTL |= 0x20;
else
TOGCTL |= 0x40;
}
// Loop the data to the IN endpoint
for (i=0; i < OUT7BC; i++)
{
IN7BUF[i] = ~OUT7BUF[i];
}
// // BUGBUG If 63 bytes was written, inject an error
// if (OUT7BC == 63)
// {
// IN7BUF[3] = IN7BUF[4];
// }
// Arm the IN endpoint
IN7BC = i;
// Arm the OUT so it can receive the next packet
OUT7BC = 0;
// clear the IRQ
EZUSB_IRQ_CLEAR();
OUT07IRQ = bmEP7;*/
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -