📄 gsnake.tex
字号:
\rhead{Object class GSNAKE}
\section{GSNAKE : Generalized Active Contour Model}
{\tt GSNAKE} is a class for modeling and extracting arbitrary deformable contours. It consists of {\tt PYRAMID} for external energy calculation and {\tt CONTOUR} class for internal energy calculation. {\tt GSNAKE} has the following structure :
\begin{verbatim}
class GSNAKE : public PYRAMID,
public CONTOUR {
protected :
double global_lambda; /* global regularization parameters */
double Eint; /* Total internal energy of snake */
double Eext; /* Total external energy of snake */
double Esnake; /* Total snake energy */
EEXTTYPE EextType; /* external energy type */
EDGE *EdgeMap; /* edge map in current pyramid level */
IMAGE *GaussImg; /* gaussImg in current pyramid level */
};
\end{verbatim}
We initialize GSNAKE using generalized Hough transform (section 3.3 of \cite{kn:thesis}) and minimize its energy using dynamic programming with stratified line search (section 3.4 of\cite{kn:thesis}). The internal energy, {\tt Eint}, measures deviation in shape irregularities, while the external energy, {\tt Eext}, adjust the contour model to match the underlying image feature. Based on parameter selection strategy (section\ 2.2 of \cite{kn:thesis}), {\tt glabal\_lambda}, we regularize the tradeoff between {\tt Eint} and {\tt Eext}, and compute the total energy, {\tt Esnake}. Our implementation allows user to select minimax criterion ({\tt \_LOCAL\_MINMAX}), local regularization parameter ({\tt \_LOCAL\_LAMBDA}) or global lambda parameter selection strategy (within the range of 0.0 to 1.0). {\tt EextType} is the type of external energy used, which includes edge gradient ({\tt \_EDGE}), edge magnitude ({\tt \_EDGEMAG}) and image intensity ({\tt \_INTENSITY}).
%
\subsection{GSNAKE constructor}
\subsubsection*{Synopsis}
\begin{verbatim}
GSNAKE(EextTYPE etype = _EDGE, double glambda = _LOCAL_MINMAX)
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt etype} & External energy type, includes intensity
(\_INTENSITY), edge \\
& magnitude only (\_EDGEMAG) and edge gradient (\_EDGE)
image energy.\\
{\tt glambda} & Regularization parameter selection strategy, includes
minmax criterion \\
& (\_LOCAL\_MINMAX) and local regularization (\_LOCAL\_LAMBDA).
\te
\subsubsection*{Description}
The constructor selects {\em minimax} criterion as its parameter selection strategy, and uses edge gradient as its external energy type if user does not specify explicitly.
%
\subsection{GSNAKE destructor}
\subsubsection*{Synopsis}
\begin{verbatim}
~GSNAKE(void)
\end{verbatim}
\subsubsection*{Description}
The destructor initializes {\tt EdgeMap} and {\tt GaussImg} to NULL.
%
\subsection{GSNAKE destructor}
\subsubsection*{Synopsis}
\begin{verbatim}
void reset(void)
\end{verbatim}
\subsubsection*{Description}
{\tt reset} initializes {\tt EdgeMap} and {\tt GaussImg} to NULL
%
\subsection{Generating pyramid images}
\subsubsection*{Synopsis}
\begin{verbatim}
int genPyramid(short level, short verbose)
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt level} & Levels of pyramid to be generated. \\
{\tt verbose} & Verbose operation mode.
\te
\subsubsection*{Returns}
\tb
{\tt NOERROR} & Successful Operation.\\
{\tt MEMORYERROR} & Memory allocation error.
\te
\subsubsection*{Description}
{\tt genPyramid} generate {\tt PYRAMID} object based on {\tt EextType} specified. To increase robustness, we use histogram equalization parameters ($high\_pct=1.0$, $low\_pct=1.0$, $ high\_val=1.0$, $low\_val=1.0$) for external energy of type \_INTENSITY, and use default condition parameters ($high\_pct=0.95$, $low\_pct=0.9$, $ high\_val=0.9$, $low\_val=0.2$) for external energy of type \_EDGE and \_EDGEMAG.
%
\subsection{Localization of contour}
\subsubsection*{Synopsis}
\begin{verbatim}
int localize( int _Qx=1, int _Qy=1,
int _NR=1, double _QR=0.25,
int _Nrxy=1, double _Qrxy=0.1,
int _Nt=1, double _Qt=RADIAN(10),
int _Ndx=1, double _Qdx=0.1,
int _Ndy=1, double _Qdy=0.1,
double _R=1.0, double _THETA=0.0 )
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt \_Qx, \_Qx} & X and Y resolution of {\tt GHOUGH} accumulator
space.\\
{\tt \_NR} & Number of cells in scale change axis.\\
{\tt \_QR} & Resolution for scale change.\\
{\tt \_Nrxy} & Number of cells in diagonal stretching change.\\
{\tt \_Qrxy} & Resolution for diagonal stretching.\\
{\tt \_Nt} & Number of cells in rotation axis.\\
{\tt \_Qt} & Resolution of rotation (in radian).\\
{\tt \_Ndx, \_Ndy} & Number of cell in X and Y of dilution axis.\\
{\tt \_Qdx, \_Qdy} & X and Y resolution of dilution.\\
{\tt \_R} & Scaling factor.\\
{\tt \_THETA} & Initial angle for reference line gsnake.
\te
\subsubsection*{Returns}
\tb
{\tt NOERROR} & Localisation performed successfully. \\
{\tt MEMORYERROR} & Unable to allocate memory for GHOUGH objects.
\te
\subsubsection*{Description}
Based on resolution and allowable range of transformation specified by users, {\tt localize} performs rigid match of a contour with the underlying image by generalized Hough transform (GHT). If Gaussian image and edge map do not exist, it will generate level 1 {\tt PYRAMID}. Localization will only be performed at highest level of pyramid so as to reduce computational time. To increase accuracy, it activates {\tt fineLocalize} if {\tt \_Qx} or {\tt \_Qy} is greater than 1.
%
\subsection{Fine localization of GSNAKE template}
\subsubsection*{Synopsis}
\begin{verbatim}
void fineLocalize( int _qx = 1, int _qy = 1,
int _cg_col = 0, int _cg_row = 0 );
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt \_qx, \_qy} & X and Y resolution of translation. \\
{\tt \_cg\_col, \_cg\_row} & Coordinate of center of gravity.
\te
\subsubsection*{Description}
{\tt fineLocalize} moves the localized contour in a small area of {\tt \_qx} x {\tt \_qy}. It calculates external energy during each move and then relocates the contour at place of lowest energy. To increase efficiency, user can also place contour at location with center ({\tt \_cg\_col, \_cg\_row}) before moving. This is useful when the contour can be in a fixed and small locality.
%
\subsection{Minimization of GSNAKE}
\subsubsection*{Synopsis}
\begin{verbatim}
int minimize( int segmentSpacing = 5, int numSearchSegment = 5,
int snaxelSpacing = 5, unsigned char blowup = 1,
int verbose = 0, double theLambda = _DEFINED_LAMBDA,
int showImg = 1,int img_Xoffset = 0, int img_Yoffset = 0 );
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt segmentSpacing} & Coarse search spacing. \\
{\tt numSearchSegment} & Number of searched segments around snaxel.\\
{\tt snaxelSpacing} & Snaxel spacing. \\
{\tt blowup} & Image magnification factor.\\
{\tt verbose} & Verbose Flag. \\
{\tt theLambda} & Lambda value. \\
{\tt showImg} & Indication (0:off 1:on) of whether image is to be
shown. \\
{\tt img\_Xoffset, img\_Yoffset} & Offset of a contour from
an showing image.
\te
\subsubsection*{Description}
Based on dynamic programming with stratified line search algorithm, {\tt minimize} performs coarse to fine energy minimization. As minimization progresses from the highest to lowest pyramid level, it inserts new snaxels at interval of {\tt snaxelSpacing} between two snaxels. The {\tt showImg}, {\tt img\_Xoffset} and {\tt img\_Yoffset} allow greater flexibility when applying minimization over a small region of image. In this case, we can cut image into portions and only perform minimization on portion of interest.
%
\subsection{Marginalizing gsnake to get probablity}
\begin{verbatim}
double marginalize(int nhoodTangent, int nhoodNormal)
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt nhoodTangent} & Number of searched segments along the tangent axis
of snaxel.\\
{\tt nhoodNormal} & Number of searched segments along the normal axis
of snaxel.
\te
\subsubsection*{Returns}
Probability of match.
\subsubsection*{Description}
{\tt marginalize} sums probablities and finds location that maximize probablity of matched contour operation. The summation is done in a small region of {\tt nhoodTangent} x {\tt nhoodNormal} around a contour.
%
\subsection{Calculating total energy of a gsnake}
\subsubsection*{Synopsis}
\begin{verbatim}
double ESnake( short level, int verbose = 0 );
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt level} & Pyramid level of interest. \\
{\tt verbose} & Flag (0:off 1:on) to operate verbose mode.
\te
\subsubsection*{Returns}
Total energy of {\tt GSNAKE}.
\subsubsection*{Description}
{\tt ESnake} compute the total energy of gsnake by regularizing the internal and external energy of each snaxel.
%
\subsection{Calculating total energy of a snaxel}
\subsubsection*{Synopsis}
\begin{verbatim}
double ESnaxel( SNAXEL *now,
BOOLEAN store = _FALSE, int verbose = 0 );
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt *sxptr} & Pointer to target snaxel. \\
{\tt store} & Flag to indicate whether to store snaxel energy. \\
{\tt verbose} & Flag (0:off 1:on) to operate verbose mode.
\te
\subsubsection*{Returns}
Snaxel energy. Returns 1.0 if the snaxel coordinate is invalid.
\subsubsection*{Description}
{\tt Esnaxel} calculates the total energy of a snaxel by regularize its internal and external energy.
%
\subsection{Calculating internal energy of a snaxel}
%
\subsection{Caluclating Internal energy at snaxel co-ordinates}
\begin{verbatim}
double EInternal(SNAXEL *now)
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt now} & Pointer to target snaxel.
\te
\subsubsection*{Returns}
Internal energy of a snaxel.
\subsubsection*{Description}
{\tt EInternal} computes the internal energy of a snaxel.
%
\subsection{Calculating external energy of a snaxel}
\subsubsection*{Synopsis}
\begin{verbatim}
double EExternal(SNAXEL *now);
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt *now} & Pointer to the target snaxel.
\te
\subsubsection*{Returns}
External energy of a snaxel.
\subsubsection*{Description}
{\tt Eexternal} calculates the external energy of snaxel. If {\tt EextType} is {\tt \_INETNSITY}, it will return value $1-\mbox{intensity}$. If {\tt \_EDGEMAG}, it will return value $1-\mbox{edgeMag}$. Otherwise, it will consider both magnitude and direction of an edge point (Eqn 3.18 of \cite{kn:thesis}).
%
\subsection{Showing GSNAKE}
\subsubsection*{Synopsis}
\begin{verbatim}
void showLine( unsigned char blowup=1, int Xoffset=0, int Yoffset= 0)
\end{verbatim}
\subsubsection*{Arguments}
\tb
{\tt blowup} & Image Magnification factor. \\
{\tt Xoffset, Yoffset} & X and Y offset for image display.
\te
\subsubsection*{Description}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -