📄 rfc1812.txt
字号:
(i.e., it fails to satisfy one or more of the Relevant MUST, MUST IMPLEMENT, or MUST NOT requirements). This specification occasionally indicates that an implementation SHOULD implement a management variable, and that it SHOULD have a certain default value. An unconditionally compliant implementationBaker Standards Track [Page 10]RFC 1812 Requirements for IP Version 4 Routers June 1995 implements the default behavior, and if there are other implemented behaviors implements the variable. A conditionally compliant implementation clearly documents what the default setting of the variable is or, in the absence of the implementation of a variable, may be construed to be. An implementation that both fails to implement the variable and chooses a different behavior is not compliant. For any of the SHOULD and SHOULD NOT requirements, a router may provide a configuration option that will cause the router to act other than as specified by the requirement. Having such a configuration option does not void a router's claim to unconditional compliance if the option has a default setting, and that setting causes the router to operate in the required manner. Likewise, routers may provide, except where explicitly prohibited by this memo, options which cause them to violate MUST or MUST NOT requirements. A router that provides such options is compliant (either fully or conditionally) if and only if each such option has a default setting that causes the router to conform to the requirements of this memo. Please note that the authors of this memo, although aware of market realities, strongly recommend against provision of such options. Requirements are labeled MUST or MUST NOT because experts in the field have judged them to be particularly important to interoperability or proper functioning in the Internet. Vendors should weigh carefully the customer support costs of providing options that violate those rules. Of course, this memo is not a complete specification of an IP router, but rather is closer to what in the OSI world is called a profile. For example, this memo requires that a number of protocols be implemented. Although most of the contents of their protocol specifications are not repeated in this memo, implementors are nonetheless required to implement the protocols according to those specifications.1.2 Relationships to Other Standards There are several reference documents of interest in checking the status of protocol specifications and standardization: o INTERNET OFFICIAL PROTOCOL STANDARDS This document describes the Internet standards process and lists the standards status of the protocols. As of this writing, the current version of this document is STD 1, RFC 1780, [ARCH:7]. This document is periodically re-issued. You should always consult an RFC repository and use the latest version of this document.Baker Standards Track [Page 11]RFC 1812 Requirements for IP Version 4 Routers June 1995 o Assigned Numbers This document lists the assigned values of the parameters used in the various protocols. For example, it lists IP protocol codes, TCP port numbers, Telnet Option Codes, ARP hardware types, and Terminal Type names. As of this writing, the current version of this document is STD 2, RFC 1700, [INTRO:7]. This document is periodically re-issued. You should always consult an RFC repository and use the latest version of this document. o Host Requirements This pair of documents reviews the specifications that apply to hosts and supplies guidance and clarification for any ambiguities. Note that these requirements also apply to routers, except where otherwise specified in this memo. As of this writing, the current versions of these documents are RFC 1122 and RFC 1123 (STD 3), [INTRO:2] and [INTRO:3]. o Router Requirements (formerly Gateway Requirements) This memo. Note that these documents are revised and updated at different times; in case of differences between these documents, the most recent must prevail. These and other Internet protocol documents may be obtained from the: The InterNIC DS.INTERNIC.NET InterNIC Directory and Database Service info@internic.net +1-908-668-6587 URL: http://ds.internic.net/1.3 General Considerations There are several important lessons that vendors of Internet software have learned and which a new vendor should consider seriously.1.3.1 Continuing Internet Evolution The enormous growth of the Internet has revealed problems of management and scaling in a large datagram based packet communication system. These problems are being addressed, and as a result there will be continuing evolution of the specifications described in this memo. New routing protocols, algorithms, and architectures are constantly being developed. New internet layer protocols, and modifications to existing protocols, are also constantly being devised. Routers play a crucial role in the Internet, and the numberBaker Standards Track [Page 12]RFC 1812 Requirements for IP Version 4 Routers June 1995 of routers deployed in the Internet is much smaller than the number of hosts. Vendors should therefore expect that router standards will continue to evolve much more quickly than host standards. These changes will be carefully planned and controlled since there is extensive participation in this planning by the vendors and by the organizations responsible for operation of the networks. Development, evolution, and revision are characteristic of computer network protocols today, and this situation will persist for some years. A vendor who develops computer communications software for the Internet protocol suite (or any other protocol suite!) and then fails to maintain and update that software for changing specifications is going to leave a trail of unhappy customers. The Internet is a large communication network, and the users are in constant contact through it. Experience has shown that knowledge of deficiencies in vendor software propagates quickly through the Internet technical community.1.3.2 Robustness Principle At every layer of the protocols, there is a general rule (from [TRANS:2] by Jon Postel) whose application can lead to enormous benefits in robustness and interoperability: Be conservative in what you do, be liberal in what you accept from others. Software should be written to deal with every conceivable error, no matter how unlikely. Eventually a packet will come in with that particular combination of errors and attributes, and unless the software is prepared, chaos can ensue. It is best to assume that the network is filled with malevolent entities that will send packets designed to have the worst possible effect. This assumption will lead to suitably protective design. The most serious problems in the Internet have been caused by unforeseen mechanisms triggered by low probability events; mere human malice would never have taken so devious a course! Adaptability to change must be designed into all levels of router software. As a simple example, consider a protocol specification that contains an enumeration of values for a particular header field - e.g., a type field, a port number, or an error code; this enumeration must be assumed to be incomplete. If the protocol specification defines four possible error codes, the software must not break when a fifth code is defined. An undefined code might be logged, but it must not cause a failure.Baker Standards Track [Page 13]RFC 1812 Requirements for IP Version 4 Routers June 1995 The second part of the principal is almost as important: software on hosts or other routers may contain deficiencies that make it unwise to exploit legal but obscure protocol features. It is unwise to stray far from the obvious and simple, lest untoward effects result elsewhere. A corollary of this is watch out for misbehaving hosts; router software should be prepared to survive in the presence of misbehaving hosts. An important function of routers in the Internet is to limit the amount of disruption such hosts can inflict on the shared communication facility.1.3.3 Error Logging The Internet includes a great variety of systems, each implementing many protocols and protocol layers, and some of these contain bugs and misguided features in their Internet protocol software. As a result of complexity, diversity, and distribution of function, the diagnosis of problems is often very difficult. Problem diagnosis will be aided if routers include a carefully designed facility for logging erroneous or strange events. It is important to include as much diagnostic information as possible when an error is logged. In particular, it is often useful to record the header(s) of a packet that caused an error. However, care must be taken to ensure that error logging does not consume prohibitive amounts of resources or otherwise interfere with the operation of the router. There is a tendency for abnormal but harmless protocol events to overflow error logging files; this can be avoided by using a circular log, or by enabling logging only while diagnosing a known failure. It may be useful to filter and count duplicate successive messages. One strategy that seems to work well is to both: o Always count abnormalities and make such counts accessible through the management protocol (see Chapter 8); and o Allow the logging of a great variety of events to be selectively enabled. For example, it might useful to be able to log everything or to log everything for host X. This topic is further discussed in [MGT:5].1.3.4 Configuration In an ideal world, routers would be easy to configure, and perhaps even entirely self-configuring. However, practical experience in the real world suggests that this is an impossible goal, and that many attempts by vendors to make configuration easy actually cause customers more grief than they prevent. As an extreme example, aBaker Standards Track [Page 14]RFC 1812 Requirements for IP Version 4 Routers June 1995 router designed to come up and start routing packets without requiring any configuration information at all would almost certainly choose some incorrect parameter, possibly causing serious problems on any networks unfortunate enough to be connected to it. Often this memo requires that a parameter be a configurable option. There are several reasons for this. In a few cases there currently is some uncertainty or disagreement about the best value and it may be necessary to update the recommended value in the future. In other cases, the value really depends on external factors - e.g., the distribution of its communication load, or the speeds and topology of nearby networks - and self-tuning algorithms are unavailable and may be insufficient. In some cases, configurability is needed because of administrative requirements. Finally, some configuration options are required to communicate with obsolete or incorrect implementations of the protocols, distributed without sources, that persist in many parts of the Internet. To make correct systems coexist with these faulty systems, administrators must occasionally misconfigure the correct systems. This problem will correct itself gradually as the faulty systems are retired, but cannot be ignored by vendors. When we say that a parameter must be configurable, we do not intend to require that its value be explicitly read from a configuration file at every boot time. For many parameters, there is one value that is appropriate for all but the most unusual situations. In such cases, it is quite reasonable that the parameter default to that value if not explicitly set. This memo requires a particular value for such defaults in some cases. The choice of default is a sensitive issue when the configuration item controls accommodation of existing, faulty, systems. If the Internet is to converge successfully to complete interoperability, the default values built into implementations must implement the official protocol, not misconfigurations to accommodate faulty implementations. Although marketing considerations have led some vendors to choose misconfiguration defaults, we urge vendors to
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -