📄 rfc2790.txt
字号:
DESCRIPTION "This data type is used to model textual information in some character set. A network management station should use a local algorithm to determine which character set is in use and how it should be displayed. Note that this character set may be encoded with more than one octet per symbol, but will most often be NVT ASCII. When a size clause is specified for an object of this type, the size refers to the length in octets, not the number of symbols." SYNTAX OCTET STRING -- The Host Resources System Group hrSystemUptime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTIONWaldbusser & Grillo Standards Track [Page 7]RFC 2790 Host Resources MIB March 2000 "The amount of time since this host was last initialized. Note that this is different from sysUpTime in the SNMPv2-MIB [RFC1907] because sysUpTime is the uptime of the network management portion of the system." ::= { hrSystem 1 } hrSystemDate OBJECT-TYPE SYNTAX DateAndTime MAX-ACCESS read-write STATUS current DESCRIPTION "The host's notion of the local date and time of day." ::= { hrSystem 2 } hrSystemInitialLoadDevice OBJECT-TYPE SYNTAX Integer32 (1..2147483647) MAX-ACCESS read-write STATUS current DESCRIPTION "The index of the hrDeviceEntry for the device from which this host is configured to load its initial operating system configuration (i.e., which operating system code and/or boot parameters). Note that writing to this object just changes the configuration that will be used the next time the operating system is loaded and does not actually cause the reload to occur." ::= { hrSystem 3 } hrSystemInitialLoadParameters OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE (0..128)) MAX-ACCESS read-write STATUS current DESCRIPTION "This object contains the parameters (e.g. a pathname and parameter) supplied to the load device when requesting the initial operating system configuration from that device. Note that writing to this object just changes the configuration that will be used the next time the operating system is loaded and does not actually cause the reload to occur." ::= { hrSystem 4 } hrSystemNumUsers OBJECT-TYPEWaldbusser & Grillo Standards Track [Page 8]RFC 2790 Host Resources MIB March 2000 SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of user sessions for which this host is storing state information. A session is a collection of processes requiring a single act of user authentication and possibly subject to collective job control." ::= { hrSystem 5 } hrSystemProcesses OBJECT-TYPE SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of process contexts currently loaded or running on this system." ::= { hrSystem 6 } hrSystemMaxProcesses OBJECT-TYPE SYNTAX Integer32 (0..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum number of process contexts this system can support. If there is no fixed maximum, the value should be zero. On systems that have a fixed maximum, this object can help diagnose failures that occur when this maximum is reached." ::= { hrSystem 7 } -- The Host Resources Storage Group -- Registration point for storage types, for use with hrStorageType. -- These are defined in the HOST-RESOURCES-TYPES module. hrStorageTypes OBJECT IDENTIFIER ::= { hrStorage 1 } hrMemorySize OBJECT-TYPE SYNTAX KBytes UNITS "KBytes" MAX-ACCESS read-only STATUS current DESCRIPTION "The amount of physical read-write main memory, typically RAM, contained by the host." ::= { hrStorage 2 }Waldbusser & Grillo Standards Track [Page 9]RFC 2790 Host Resources MIB March 2000 hrStorageTable OBJECT-TYPE SYNTAX SEQUENCE OF HrStorageEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table of logical storage areas on the host. An entry shall be placed in the storage table for each logical area of storage that is allocated and has fixed resource limits. The amount of storage represented in an entity is the amount actually usable by the requesting entity, and excludes loss due to formatting or file system reference information. These entries are associated with logical storage areas, as might be seen by an application, rather than physical storage entities which are typically seen by an operating system. Storage such as tapes and floppies without file systems on them are typically not allocated in chunks by the operating system to requesting applications, and therefore shouldn't appear in this table. Examples of valid storage for this table include disk partitions, file systems, ram (for some architectures this is further segmented into regular memory, extended memory, and so on), backing store for virtual memory (`swap space'). This table is intended to be a useful diagnostic for `out of memory' and `out of buffers' types of failures. In addition, it can be a useful performance monitoring tool for tracking memory, disk, or buffer usage." ::= { hrStorage 3 } hrStorageEntry OBJECT-TYPE SYNTAX HrStorageEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A (conceptual) entry for one logical storage area on the host. As an example, an instance of the hrStorageType object might be named hrStorageType.3" INDEX { hrStorageIndex } ::= { hrStorageTable 1 } HrStorageEntry ::= SEQUENCE { hrStorageIndex Integer32,Waldbusser & Grillo Standards Track [Page 10]RFC 2790 Host Resources MIB March 2000 hrStorageType AutonomousType, hrStorageDescr DisplayString, hrStorageAllocationUnits Integer32, hrStorageSize Integer32, hrStorageUsed Integer32, hrStorageAllocationFailures Counter32 } hrStorageIndex OBJECT-TYPE SYNTAX Integer32 (1..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "A unique value for each logical storage area contained by the host." ::= { hrStorageEntry 1 } hrStorageType OBJECT-TYPE SYNTAX AutonomousType MAX-ACCESS read-only STATUS current DESCRIPTION "The type of storage represented by this entry." ::= { hrStorageEntry 2 } hrStorageDescr OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "A description of the type and instance of the storage described by this entry." ::= { hrStorageEntry 3 } hrStorageAllocationUnits OBJECT-TYPE SYNTAX Integer32 (1..2147483647) UNITS "Bytes" MAX-ACCESS read-only STATUS current DESCRIPTION "The size, in bytes, of the data objects allocated from this pool. If this entry is monitoring sectors, blocks, buffers, or packets, for example, this number will commonly be greater than one. Otherwise this number will typically be one." ::= { hrStorageEntry 4 } hrStorageSize OBJECT-TYPEWaldbusser & Grillo Standards Track [Page 11]RFC 2790 Host Resources MIB March 2000 SYNTAX Integer32 (0..2147483647) MAX-ACCESS read-write STATUS current DESCRIPTION "The size of the storage represented by this entry, in units of hrStorageAllocationUnits. This object is writable to allow remote configuration of the size of the storage area in those cases where such an operation makes sense and is possible on the underlying system. For example, the amount of main memory allocated to a buffer pool might be modified or the amount of disk space allocated to virtual memory might be modified." ::= { hrStorageEntry 5 } hrStorageUsed OBJECT-TYPE SYNTAX Integer32 (0..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The amount of the storage represented by this entry that is allocated, in units of hrStorageAllocationUnits." ::= { hrStorageEntry 6 } hrStorageAllocationFailures OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of requests for storage represented by this entry that could not be honored due to not enough storage. It should be noted that as this object has a SYNTAX of Counter32, that it does not have a defined initial value. However, it is recommended that this object be initialized to zero, even though management stations must not depend on such an initialization." ::= { hrStorageEntry 7 } -- The Host Resources Device Group -- -- The device group is useful for identifying and diagnosing the -- devices on a system. The hrDeviceTable contains common -- information for any type of device. In addition, some devices -- have device-specific tables for more detailed information. More -- such tables may be defined in the future for other device types. -- Registration point for device types, for use with hrDeviceType.Waldbusser & Grillo Standards Track [Page 12]RFC 2790 Host Resources MIB March 2000 -- These are defined in the HOST-RESOURCES-TYPES module. hrDeviceTypes OBJECT IDENTIFIER ::= { hrDevice 1 } hrDeviceTable OBJECT-TYPE SYNTAX SEQUENCE OF HrDeviceEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table of devices contained by the host." ::= { hrDevice 2 } hrDeviceEntry OBJECT-TYPE SYNTAX HrDeviceEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A (conceptual) entry for one device contained by the host. As an example, an instance of the hrDeviceType object might be named hrDeviceType.3" INDEX { hrDeviceIndex } ::= { hrDeviceTable 1 } HrDeviceEntry ::= SEQUENCE { hrDeviceIndex Integer32, hrDeviceType AutonomousType, hrDeviceDescr DisplayString, hrDeviceID ProductID, hrDeviceStatus INTEGER, hrDeviceErrors Counter32 } hrDeviceIndex OBJECT-TYPE SYNTAX Integer32 (1..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "A unique value for each device contained by the host. The value for each device must remain constant at least from one re-initialization of the agent to the next re-initialization." ::= { hrDeviceEntry 1 } hrDeviceType OBJECT-TYPE SYNTAX AutonomousType MAX-ACCESS read-only STATUS current DESCRIPTIONWaldbusser & Grillo Standards Track [Page 13]RFC 2790 Host Resources MIB March 2000 "An indication of the type of device. If this value is `hrDeviceProcessor { hrDeviceTypes 3 }' then an entry exists in the hrProcessorTable which corresponds to this device. If this value is
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -