📄 rfc1680.txt
字号:
Network Working Group C. BrazdziunasRequest for Comments: 1680 BellcoreCategory: Informational August 1994 IPng Support for ATM ServicesStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract This document was submitted to the IETF IPng area in response to RFC 1550. Publication of this document does not imply acceptance by the IPng area of any ideas expressed within. Comments should be submitted to the big-internet@munnari.oz.au mailing list.Executive Summary This white paper describes engineering considerations for IPng as solicited by RFC 1550 [1]. IPng should provide support for existing and emerging link technologies that it will be transported over. Link technologies like Ethernet simply multiplex traffic from upper layer protocols onto a single channel. "Sophisticated" link technologies like ATM are emerging in the marketplace allowing several virtual channels to be established over a single wire (or fiber) potentially based on an applications' network performance objectives. Support for both "sophisticated" (ATM) and existing link technologies needs to be considered in an IPng candidate. End-to-end applications will communicate through a network where IPng packets travel across subnetworks such as Ethernet and Hippi and also more "sophisticated" link levels such as ATM. Though initial support for IPng over ATM subnetworks will not facilitate a virtual circuit per application, the hooks to provide such a mapping should be in place while also maintaining support for the transport of IPng packets across conventional subnetworks. Application support for QOS-based link level service requires that the following types of ATM information be mappable (or derivable) from the higher level protocol(s) such as IPng: source and destination(s) addresses, connection quality of service parameters, connection state, and ATM virtual circuit identifier. Some of these mappings may be derivable from information provided by proposed resource reservation protocols supporting an integrated services Internet [4]. However, the ATM virtual circuit identifier should be efficiently derivable from IPng packetBrazdziunas [Page 1]RFC 1680 IPng Support for ATM Services August 1994 information. An IPng candidate should provide evidence that the mapping from an applications' IPng packets to ATM virtual circuit(s) can be accomplished in a heterogeneous Internet architecture keeping in consideration the gigabit/sec rates that IPng/ATM subnetworks will eventually be operating at.1. Introduction This paper describes parameters that are needed to map IPng (or any protocol operating above the link level) to ATM services. ATM is a "sophisticated" link level technology which provides the potential capability for applications at the TCP/UDP level to map to a single ATM virtual circuit for transport across an ATM network(s) customized to the network performance and traffic requirements for that application. This is a step above many of today's existing link technologies which can only support a single level of network performance that must be shared by all applications operating on a single endpoint. The future Internet will be comprised of both conventional and "sophisticated" link technologies. The "sophisticated" features of link layers like ATM need to be incorporated into an internet where data travels not only across an ATM network but also several other existing LAN and WAN technologies. Future networks are likely to be a combination of subnetworks providing best-effort link level service such as Ethernet and also sophisticated subnetworks that can support quality of service-based connections like ATM. One can envision data originating from an Ethernet, passing through an ATM network, FDDI network, another ATM network, and finally arriving at its destination residing on a HIPPI network. IPng packets will travel through such a list of interconnected network technologies as ATM is incorporated as one of the components of the future Internet. To support per application customizable link level connections, four types of ATM information should be derivable from the higher level protocol(s) like IPng. This ATM information includes: source and destination ATM addresses, connection quality of service parameters, connection state, and an ATM virtual circuit identifier which maps to a single IPng application (i.e., single TCP/UDP application). Some of these mapping could potentially be derivable through information provided by proposed resource reservation protocols supporting an integrated services Internet [4]. However, the ATM virtual circuit identifier needs to be efficiently mappable from IPng packet information.Brazdziunas [Page 2]RFC 1680 IPng Support for ATM Services August 1994 Organization of this white paper is as follows. First the characteristics of ATM are described focusing on functions that are not provided in today's LAN technologies. This section provides background information necessary for the following section describing the parameters needed to map IPng services to ATM services.2. Terminology In this white paper, the term "application" refers to a process or set of collective processes operating at the TCP/UDP level or above in the protocol stack. For example, each instance of "telnet" or "ftp" session running on an end station is a distinct application.3. Characteristics of ATM Service ATM has several characteristics which differentiates it from current link level technologies. First of all, ATM has the capability of providing many virtual channels to transmit information over a single wire (or fiber). This is very similar to X.25, where many logical channels can be established over a single physical media. But unlike X.25, ATM allows for each of these channels or circuits to have a customizable set of performance and quality of service characteristics. Link level technologies like Ethernet provide a single channel with a single performance and quality of service characteristic. In a sense, a single ATM link level media appears like an array of of link level technologies each with customizable characteristics. ATM virtual circuits can be established dynamically utilizing its signaling protocol. ATM signaling is a source initiated negotiation process for connection establishment. This protocol informs elements in the network of the characteristics for the desired connection. ATM signaling does not provide any guidelines for how network elements decide whether it can accept a call or where a signaling request should be forwarded if the end destination (from the link level perspective) has not been reached. In short, ATM signaling does not support any routing functionality of network admission control. ATM signaling establishes a "hard state" in the network for a call. "Hard state" implies that the state of a connection in intermediate switching equipment can be set and once established it will be maintained until a message is received by one of the ends of the call requesting a change in state for the connection [2]. As a result, an ATM end system (this could be a workstation with an ATM adapter or a router with an ATM interface) receives guaranteed service from the ATM network. The ATM network is responsible for maintaining the connection state. The price the ATM termination points pay for this guarantee is the responsibility of changing the state of theBrazdziunas [Page 3]RFC 1680 IPng Support for ATM Services August 1994 connection, specifically informing the ATM network to establish, alter, or tear-down the connection. Each ATM end point in a network has an ATM address associated with it to support dynamic connection establishment via signaling. These addresses are hierarchical in structure and globally unique [3]. As a result, these addresses are routable. This allows ATM networks to eventually support a large number of ATM endpoints once a routing architecture and protocols to support it become available. The ATM User-Network Interface (UNI) signaling protocol based on ITU-TS Q.93B allows many different service parameters to be specified for describing connection characteristics. [3] These parameters can be grouped into several categories: ATM adaptation layer (AAL) information, network QOS objectives, connection traffic descriptor, and transit network selector. The AAL information specifies negotiable parameters such as AAL type and maximum packet sizes. The network QOS objectives describe the service that the ATM user expects from the network. Q.93B allows for one of five service classes to be selected by the ATM user. The service classes are defined as general traffic types such as circuit emulation (class A), variable bit rate audio and video (class B), connection-oriented data transfer (class C), connectionless data transfer (class D), best effort service (class X), and unspecified [3]. Each of these
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -