📄 rfc2285.txt
字号:
Network Working Group R. MandevilleRequest for Comments: 2285 European Network LaboratoriesCategory: Informational February 1998 Benchmarking Terminology for LAN Switching DevicesStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved.Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Existing definitions . . . . . . . . . . . . . . . . . . . . . . 2 3. Term definitions . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1.1 Device under test (DUT) . . . . . . . . . . . . . . . . 3 3.1.2 System under test (SUT) . . . . . . . . . . . . . . . . 3 3.2 Traffic orientation. . . . . . . . . . . . . . . . . . . . . 4 3.2.1 Unidirectional traffic. . . . . . . . . . . . . . . . . 4 3.2.2 Bidirectional traffic . . . . . . . . . . . . . . . . . 5 3.3 Traffic distribution . . . . . . . . . . . . . . . . . . . . 6 3.3.1 Non-meshed traffic. . . . . . . . . . . . . . . . . . . 6 3.3.2 Partially meshed traffic. . . . . . . . . . . . . . . . 7 3.3.3 Fully meshed traffic. . . . . . . . . . . . . . . . . . 8 3.4 Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4.1 Burst . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4.2 Burst size . . . . . . . . . . . . . . . . . . . . . . 10 3.4.3 Inter-burst gap (IBG). . . . . . . . . . . . . . . . . 10 3.5 Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5.1 Intended load (Iload) . . . . . . . . . . . . . . . . 11 3.5.2 Offered load (Oload) . . . . . . . . . . . . . . . . . 12 3.5.3 Maximum offered load (MOL) . . . . . . . . . . . . . . 13 3.5.4 Overloading . . . . . . . . . . . . . . . . . . . . . 14 3.6 Forwarding rates . . . . . . . . . . . . . . . . . . . . . 15 3.6.1 Forwarding rate (FR) . . . . . . . . . . . . . . . . . 15 3.6.2 Forwarding rate at maximum offered load (FRMOL). . . . 16 3.6.3 Maximum forwarding rate (MFR). . . . . . . . . . . . . 16 3.7 Congestion control . . . . . . . . . . . . . . . . . . . . 17 3.7.1 Backpressure . . . . . . . . . . . . . . . . . . . . . 17 3.7.2 Forward pressure . . . . . . . . . . . . . . . . . . . 18Mandeville Informational [Page 1]RFC 2285 Benchmarking Terminology February 1998 3.7.3 Head of line blocking . . . . . . . . . . . . . . . . 19 3.8 Address handling . . . . . . . . . . . . . . . . . . . . . 20 3.8.1 Address caching capacity . . . . . . . . . . . . . . . 20 3.8.2 Address learning rate . . . . . . . . . . . . . . . . 20 3.8.3 Flood count . . . . . . . . . . . . . . . . . . . . . 21 3.9 Errored frame filtering . . . . . . . . . . . . . . . . . . 21 3.9.1 Errored frames . . . . . . . . . . . . . . . . . . . . 22 3.10 Broadcasts . . . . . . . . . . . . . . . . . . . . . . . . 22 3.10.1 Broadcast forwarding rate at maximum load . . . . . . 22 3.10.2 Broadcast latency . . . . . . . . . . . . . . . . . . 23 4. Security Considerations . . . . . . . . . . . . . . . . . . . . 24 5. References. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6. Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . 24 7. Author's Address. . . . . . . . . . . . . . . . . . . . . . . . 24 8. Full Copyright Statement. . . . . . . . . . . . . . . . . . . . 251. Introduction This document is intended to provide terminology for the benchmarking of local area network (LAN) switching devices. It extends the terminology already defined for benchmarking network interconnect devices in RFCs 1242 and 1944 to switching devices. Although it might be found useful to apply some of the terms defined here to a broader range of network interconnect devices, this RFC primarily deals with devices which switch frames at the Medium Access Control (MAC) layer. It defines terms in relation to the traffic put to use when benchmarking switching devices, forwarding performance, congestion control, latency, address handling and filtering.2. Existing definitions RFC 1242 "Benchmarking Terminology for Network Interconnect Devices" should be consulted before attempting to make use of this document. RFC 1944 "Benchmarking Methodology for Network Interconnect Devices" contains discussions of a number of terms relevant to the benchmarking of switching devices and should also be consulted. For the sake of clarity and continuity this RFC adopts the template for definitions set out in Section 2 of RFC 1242. Definitions are indexed and grouped together in sections for ease of reference. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.Mandeville Informational [Page 2]RFC 2285 Benchmarking Terminology February 19983. Term definitions3.1 Devices This group of definitions applies to all types of networking devices.3.1.1 Device under test (DUT) Definition: The network forwarding device to which stimulus is offered and response measured. Discussion: A single stand-alone or modular unit which receives frames on one or more of its interfaces and then forwards them to one or more interfaces according to the addressing information contained in the frame. Measurement units: n/a Issues: See Also: system under test (SUT) (3.1.2)3.1.2 System Under Test (SUT) Definition: The collective set of network devices to which stimulus is offered as a single entity and response measured. Discussion: A system under test may be comprised of a variety of networking devices. Some devices may be active in the forwarding decision- making process, such as routers or switches; other devices may be passive such as a CSU/DSU. Regardless of constituent components, the system is treated as a singular entity to which stimulus is offered and response measured.Mandeville Informational [Page 3]RFC 2285 Benchmarking Terminology February 1998 Measurement units: n/a Issues: See Also: device under test (DUT) (3.1.1)3.2 Traffic orientation This group of definitions applies to the traffic presented to the interfaces of a DUT/SUT and indicates whether the interfaces are receiving only, transmitting only, or both receiving and transmitting.3.2.1 Unidirectional traffic Definition: When all frames presented to the input interfaces of a DUT/SUT are addressed to output interfaces which do not themselves receive any frames. Discussion: This definition conforms to the discussion in section 16 of RFC 1944 which describes how unidirectional traffic can be offered to a DUT/SUT to measure throughput. Unidirectional traffic is also appropriate for: -the measurement of the minimum inter-frame gap -the creation of many-to-one or one-to-many interface overload -the detection of head of line blocking -the measurement of forwarding rates and throughput when congestion control mechanisms are active. When a tester offers unidirectional traffic to a DUT/SUT reception and transmission are handled by different interfaces or sets of interfaces of the DUT/SUT. All frames received from the tester by the DUT/SUT are transmitted back to the tester from interfaces which do not themselves receive any frames. It is useful to distinguish traffic orientation and traffic distribution when considering traffic patterns used in device testing. Unidirectional traffic, for example, is traffic orientated in a single direction between mutually exclusive sets of source and destination interfaces of a DUT/SUT. Such traffic,Mandeville Informational [Page 4]RFC 2285 Benchmarking Terminology February 1998 however, can be distributed between interfaces in different ways. When traffic is sent to two or more interfaces from an external source and then forwarded by the DUT/SUT to a single output interface the traffic orientation is unidirectional and the traffic distribution between interfaces is many-to-one. Traffic can also be sent to a single input interface and forwarded by the DUT/SUT to two or more output interfaces to achieve a one-to-many distribution of traffic. Such traffic distributions can also be combined to test for head of line blocking or to measure forwarding rates and throughput when congestion control mechanisms are active. When a DUT/SUT is equipped with interfaces running at different media rates the number of input interfaces required to load or overload an output interface or interfaces will vary. It should be noted that measurement of the minimum inter-frame gap serves to detect violations of the IEEE 802.3 standard. Issues: half duplex / full duplex Measurement units: n/a See Also: bidirectional traffic (3.2.2) non-meshed traffic (3.3.1) partially meshed traffic (3.3.2) fully meshed traffic (3.3.3) congestion control (3.7) head of line blocking (3.7.3)3.2.2 Bidirectional traffic Definition: Frames presented to a DUT/SUT such that every receiving interface also transmits. Discussion: This definition conforms to the discussion in section 14 of RFC 1944.Mandeville Informational [Page 5]RFC 2285 Benchmarking Terminology February 1998 When a tester offers bidirectional traffic to a DUT/SUT all the interfaces which receive frames from the tester also transmit frames back to the tester. Bidirectional traffic MUST be offered when measuring the throughput or forwarding rate of full duplex interfaces of a switching device. Issues: truncated binary exponential back-off algorithm Measurement units: n/a See Also: unidirectional traffic (3.2.1) non-meshed traffic (3.3.1) partially meshed traffic (3.3.2) fully meshed traffic (3.3.3)3.3 Traffic distribution This group of definitions applies to the distribution of frames forwarded by a DUT/SUT.3.3.1 Non-meshed traffic Definition: Frames offered to a single input interface and addressed to a single output interface of a DUT/SUT where input and output interfaces are grouped in mutually exclusive pairs. Discussion: In the simplest instance of non-meshed traffic all frames are offered to a single input interface and addressed to a single output interface. The one-to-one mapping of input to output interfaces required by non-meshed traffic can be extended to multiple mutually exclusive pairs of input and output interfaces. Measurement units: n/aMandeville Informational [Page 6]RFC 2285 Benchmarking Terminology February 1998 Issues: half duplex / full duplex See Also: unidirectional traffic (3.2.1) bidirectional traffic (3.2.2) partially meshed traffic (3.3.2.) fully meshed traffic (3.3.3) burst (3.4.1)3.3.2 Partially meshed traffic Definition: Frames offered to one or more input interfaces of a DUT/SUT and addressed to one or more output interfaces where input and output interfaces are mutually exclusive and mapped one-to-many, many- to-one or many-to-many. Discussion: This definition follows from the discussion in section 16 of RFC 1944 on multi-port testing. Partially meshed traffic allows for one-to-many, many-to-one or many-to-many mappings of input to output interfaces and readily extends to configurations with multiple switching devices linked together over backbone connections. It should be noted that partially meshed traffic can load backbone connections linking together two switching devices or systems more than fully meshed traffic. When offered partially meshed traffic devices or systems can be set up to forward all of the frames they receive to the opposite side of the backbone connection whereas fully meshed traffic requires at least some of the offered frames to be forwarded locally, that is to the interfaces of the DUT/SUT receiving them. Such frames will not traverse the backbone connection. Measurement units: n/a Issues: half duplex / full duplexMandeville Informational [Page 7]RFC 2285 Benchmarking Terminology February 1998 See Also: unidirectional traffic (3.2.1) bidirectional traffic (3.2.2) non-meshed traffic (3.3.1) fully meshed traffic (3.3.3) burst (3.4.1)3.3.3 Fully meshed traffic Definition: Frames offered to a designated number of interfaces of a DUT/SUT such that each one of the interfaces under test receives frames addressed to all of the other interfaces under test. Discussion: As with bidirectional partially meshed traffic, fully meshed traffic requires each one the interfaces of a DUT/SUT to both receive and transmit frames. But since the interfaces are not divided into groups as with partially meshed traffic every interface forwards frames to and receives frames from every other interface. The total number of individual input/output interface pairs when traffic is fully meshed over n switched interfaces equals n x (n - 1). This compares with n x (n / 2) such interface pairs when traffic is partially meshed. Fully meshed traffic on half duplex interfaces is inherently bursty since interfaces must interrupt transmission whenever they receive frames. This kind of bursty meshed traffic is characteristic of real network traffic and can be advantageously used to diagnose a DUT/SUT by exercising many of its component parts simultaneously. Additional inspection may be warranted to correlate the frame forwarding capacity of a DUT/SUT when offered meshed traffic and the behavior of individual elements such as input or output buffers, buffer allocation mechanisms, aggregate switching capacity, processing speed or medium access control. The analysis of forwarding rate measurements presents a challenge when offering bidirectional or fully meshed traffic since the rate at which the tester can be observed to transmit frames to the DUT/SUT may be smaller than the rate at which it intends to transmit due to collisions on half duplex media or the action of congestion control mechanisms. This makes it important to take account of both the intended and offered loads defined in sections 3.5.1.and 3.5.2 below when reporting the results of such forwarding rate measurements.Mandeville Informational [Page 8]RFC 2285 Benchmarking Terminology February 1998 When offering bursty meshed traffic to a DUT/SUT a number of variables have to be considered. These include frame size, the number of frames within bursts, the interval between bursts as well as the distribution of load between incoming and outgoing traffic. Terms related to bursts are defined in section 3.4 below. Measurement units: n/a Issues: half duplex / full duplex
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -