📄 rfc1989.txt
字号:
RFC 1989 PPP Link Quality Monitoring August 1996 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SaveInLQRs | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SaveInPackets | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SaveInDiscards | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SaveInErrors | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SaveInOctets | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Magic-Number The Magic-Number field is four octets and aids in detecting links which are in the looped-back condition. Unless modified by a Configuration Option, the Magic-Number MUST be transmitted as zero and MUST be ignored on reception. If Magic-Numbers have been negotiated, incoming LQR packets SHOULD be checked to ensure that the local end is not seeing its own Magic-Number and thus a looped-back link. See the Magic-Number Configuration Option for further explanation. LastOutLQRs The LastOutLQRs field is four octets, and is copied from the most recently received PeerOutLQRs on transmission. LastOutPackets The LastOutPackets field is four octets, and is copied from the most recently received PeerOutPackets on transmission. LastOutOctets The LastOutOctets field is four octets, and is copied from the most recently received PeerOutOctets on transmission. PeerInLQRs The PeerInLQRs field is four octets, and is copied from the most recently received SaveInLQRs on transmission. Whenever the PeerInLQRs field is discovered to be zero, the LastOut... fields are indeterminate, and the PeerIn... fields contain the initial values for the peer.Simpson Standards Track [Page 9]RFC 1989 PPP Link Quality Monitoring August 1996 PeerInPackets The PeerInPackets field is four octets, and is copied from the most recently received SaveInPackets on transmission. PeerInDiscards The PeerInDiscards field is four octets, and is copied from the most recently received SaveInDiscards on transmission. PeerInErrors The PeerInErrors field is four octets, and is copied from the most recently received SaveInErrors on transmission. PeerInOctets The PeerInOctets field is four octets, and is copied from the most recently received SaveInOctets on transmission. PeerOutLQRs The PeerOutLQRs field is four octets, and is copied from OutLQRs on transmission. This number MUST include this LQR. PeerOutPackets The PeerOutPackets field is four octets, and is copied from the current MIB ifOutUniPackets and ifOutNUniPackets on transmission. This number MUST include this LQR. PeerOutOctets The PeerOutOctets field is four octets, and is copied from the current MIB ifOutOctets on transmission. This number MUST include this LQR. SaveInLQRs The SaveInLQRs field is four octets, and is copied from InLQRs on reception. This number MUST include this LQR. SaveInPackets The SaveInPackets field is four octets, and is copied from the current MIB ifInUniPackets and ifInNUniPackets on reception. This number MUST include this LQR.Simpson Standards Track [Page 10]RFC 1989 PPP Link Quality Monitoring August 1996 SaveInDiscards The SaveInDiscards field is four octets, and is copied from the current MIB ifInDiscards on reception. This number MUST include this LQR. SaveInErrors The SaveInErrors field is four octets, and is copied from the current MIB ifInErrors on reception. This number MUST include this LQR. SaveInOctets The SaveInOctets field is four octets, and is copied from the current InGoodOctets on reception. This number MUST include this LQR. Note that InGoodOctets is not the same as the MIB ifInOctets counter, as InGoodOctets does not include octets for packets which are discards or errors.Simpson Standards Track [Page 11]RFC 1989 PPP Link Quality Monitoring August 19962.7. Transmission of Reports When the PPP Link Control Protocol has reached the Opened state, the Link Quality Monitoring process MAY commence sending Link-Quality- Reports. If a Protocol-Reject is received specifying a LQR packet, the LQM process MUST cease sending LQRs. Usually, the LQR is transmitted when the LQR timer for the link expires. If no LQR timer is used, a LQR is generated upon receipt of an incoming LQR. The negotiation process ensures that at least one side of the link is using a LQR timer. In addition, a LQR is generated whenever two successive LQRs are received which have the same PeerInLQRs value. This may indicate that a LQR has been missed, or that the implementation is sending at a significantly slower rate than the peer, or that the peer has accelerated LQR generation to better quantify errors on the link. Whenever a LQR is sent, the LQR timer MUST be restarted.2.8. Calculations Each time a Link-Quality-Report packet is received from the inbound link, the Link-Manager can compare the associated fields. The fields of the previous LQR can be subtracted from the current LQR values to obtain an absolute "delta", which allows comparision of the changes seen by each end of the link. If the received PeerInLQRs field is zero, the LastOut... fields are indeterminate, and the PeerIn... fields contain the initial values for the peer. No calculations using these fields can be performed at this time. Implementation Note: The following counters wrap to zero when their maximum value is reached. Care must be taken to ensure that correct "delta" calculations are performed at that time. The LastOutLQRs field may be directly compared with the PeerInLQRs field to determine how many outbound LQRs have been lost. The LastOutLQRs field may be directly compared with the OutLQRs counter to determine how many outbound LQRs are still in the pipeline.Simpson Standards Track [Page 12]RFC 1989 PPP Link Quality Monitoring August 1996 The change in PeerInPackets may be compared with the change in LastOutPackets to determine the number of lost packets over the outgoing link. The change in PeerInOctets may be compared with the change in LastOutOctets to determine the number of lost octets over the outgoing link. The change in SaveInPackets may be compared with the change in PeerOutPackets to determine the number of lost packets over the incoming link. The change in SaveInOctets may be compared with the change in PeerOutOctets to determine the number of lost octets over the incoming link. The change in the PeerInDiscards and PeerInErrors fields may be used to determine whether packet loss is due to congestion in the peer rather than physical link failure.2.9. Failure Detection When the link is operating well in both directions of the link, the LQR is superfluous. The maximum time interval for transmitting LQRs SHOULD be chosen to minimally interfere with active traffic. When there is a measurable loss of data in either direction, if the overall throughput is adequate, conditions are not severe enough to warrant dropping the link. Sending LQRs faster will gain nothing, except to measure peaks in the loss rate. The time interval MUST be chosen to be long enough to have a good smoothing effect on the data, while short enough to ensure fast enough response to complete failure. When the link is good incoming, but very bad outgoing, incoming LQRs indicate a high loss on the outgoing side of the link. Sending LQRs faster won't help, because they are probably lost on the way to the peer. When the link is good outgoing, but very bad incoming, incoming LRQs will be frequently lost. In this case, LQRs SHOULD be sent at a faster rate. This primarily relies on the peer to make an informed policy decision. The peer will also send LQRs in response (due to the duplicate PeerInLQRs field), and some of those LQRs may successfully arrive.Simpson Standards Track [Page 13]RFC 1989 PPP Link Quality Monitoring August 1996 When a LQR does not arrive within the time expected, or the LQR received indicates that the links are truly bad, at least one additional LQR SHOULD be sent. An algorithmic decision requires at least 2 round trip intervals. The loss rate could be transient, due to a heavily loaded link, or a lost outgoing LQR.2.10. Policy Suggestions Link-Quality-Report packets provide a mechanism to determine the link quality, but it is up to each implementation to decide when the link is usable. It is recommended that this policy implement some amount of hysteresis so that the link does not bounce up and down. One policy is to use a K out of N algorithm. In such an algorithm, there must be K successes out of the last N periods for the link to be considered of good quality. Procedures for recovery from poor quality links are unspecified and may vary from implementation to implementation. A suggested approach is to immediately close all other Network-Layer protocols (i.e., cause IPCP to transmit a Terminate-Request), but to continue transmitting Link-Quality-Reports. Once the link quality again reaches an acceptable level, Network-Layer protocols can be reconfigured.Simpson Standards Track [Page 14]RFC 1989 PPP Link Quality Monitoring August 1996Security Considerations Security issues are not discussed in this memo.Acknowledgements Some of the text in this document is taken from RFC 1172, by Drew Perkins of Carnegie Mellon University, and by Russ Hobby of the University of California at Davis. Special thanks to Craig Fox (Network Systems), and Karl Fox (Morning Star Technologies), for design suggestions based on implementation experience.References [1] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD 51, RFC 1661, Daydreamer, July 1994. [2] McCloghrie, K., and M. Rose, "Management Information Base for Network Management of TCP/IP-based internets: MIB-II", STD 17, RFC 1213, March 1991. [3] Rose, M., and K. McCloghrie, "Structure and Identification of Management Information for TCP/IP-based Internets", STD 16, RFC 1155, May 1990.Simpson Standards Track [Page 15]RFC 1989 PPP Link Quality Monitoring August 1996Chair's Address The working group can be contacted via the current chair: Karl Fox Ascend Communications 3518 Riverside Drive, Suite 101 Columbus, Ohio 43221 EMail: karl@ascend.comAuthor's Address Questions about this memo can also be directed to: William Allen Simpson Daydreamer Computer Systems Consulting Services 1384 Fontaine Madison Heights, Michigan 48071 Bill.Simpson@um.cc.umich.edu bsimpson@MorningStar.com (prefered)Simpson Standards Track [Page 16]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -