📄 rfc1108.txt
字号:
of the BSO, and thus must be protected from unauthorized modification. Note that compliant implementations must allow a minimum of 14 distinct Protection Authority flags (consistent with the Protection Authority field size defined in Section 2.4) to be set independently in any parameter involving Protection Authority flag fields. a. SYSTEM-LEVEL-MAX: This parameter specifies the highest Classification Level (see Table 1) which may be present in the classification level field of the Basic Security Option in any datagram transmitted or received by the system. b. SYSTEM-LEVEL-MIN: This parameter specifies the lowest Classification Level (see Table 1) which may be present in the classification level field of the Basic Security Option in anyKent [Page 6]RFC 1108 U.S. DOD Security Option November 1991 datagram transmitted by the system. c. SYSTEM-AUTHORITY-IN: This parameter is a set, each member of which is a Protection Authority flag field. The set enumerates all of the Protection Authority flag fields which may be present in the Protection Authority field of the Basic Security Option in any datagram received by this system. A compliant implementation must be capable of representing at least 256 distinct Protection Authority flag fields (each field must be capable of representing 14 distinct Protection Authority flags) in this set. Each element of the enumerated set may be a combination of multiple protection authority flags. Set elements representing multiple Protection Authorities are formed by ORing together the flags that represent each authority. Thus, for example, a set element representing datagrams to be protected according to NSA and SCI rules might be represented as "00110000" while an element representing protection mandated by NSA, DOE and SIOP-ESI might be represented as "01011000". (These examples illustrate 8-bit set elements apropos the minimal encodings for currently defined Protection Authority flags. If additional flags are defined beyond the first byte of the Protection Authority Field, longer encodings for set elements may be required.) It is essential that implementations of the Internet Protocol Basic Security Option provide a convenient and compact way for system security managers to express which combinations of flags are allowed. The details of such an interface are outside the scope of this RFC, however, enumeration of bit patterns is NOT a recommended interface. As an alternative, one might consider a notation of the form COMB(GENSER,NSA,SCI)+COMB(SIOP-ESI,NSA,SCI) in which "COMB" means ANY combination of the flags referenced as parameters of the COMB function are allowed and "+" means "or". d. SYSTEM-AUTHORITY-OUT: This parameter is a set, each member of which is a Protection Authority flag field. The set enumerates all of the Protection Authority flag fields which may be present in the Protection Authority field of the Basic Security Option in any datagram transmitted by this system. A compliant implementation must be capable of representing at least 256 distinct Protection Authority flag fields in this set. Explicit enumeration of all authorized Protection Authority field flags permits great flexibility, and in particular does not impose set inclusion restrictions on this parameter. The following configuration parameters are defined for each network port present on the system. The term "port" is used here to referKent [Page 7]RFC 1108 U.S. DOD Security Option November 1991 either to a physical device interface (which may represent multiple IP addresses) or to a single IP address (which may be served via multiple physical interfaces). In general the former interpretation will apply and is consistent with the Trusted Network Interpretation of the Trusted Computer Systems Evaluation Criteria (TNI) concept of a "communications channel" or "I/O device." However, the latter interpretation also may be valid depending on local system security capabilities. Note that some combinations of port parameter values are appropriate only if the port is "single level," i.e., all data transmitted or received via the port is accurately characterized by exactly one Classification Level and Protection Authority Flag field. e. PORT-LEVEL-MAX: This parameter specifies the highest Classification Level (see Table 1) which may be present in the classification level field of the Basic Security Option in any datagram transmitted or received by the system via this network port. f. PORT-LEVEL-MIN: This parameter specifies the lowest Classification Level (see Table 1) which may be present in the classification level field of the Basic Security Option in any datagram transmitted by the system via this network port. g. PORT-AUTHORITY-IN: This parameter is a set each member of which is a Protection Authority flag field. The set enumerates all of the Protection Authority flag fields which may be present in the Protection Authority field of the Basic Security Option in any datagram received via this port. A compliant implementation must be capable of representing at least 256 distinct Protection Authority flag fields in this set. h. PORT-AUTHORITY-OUT: This parameter is a set each member of which is a Protection Authority flag field. The set enumerates all of the Protection Authority flag fields which may be present in the Protection Authority field of the Basic Security Option in any datagram transmitted via this port. A compliant implementation must be capable of representing at least 256 distinct Protection Authority flag fields in this set. i. PORT-AUTHORITY-ERROR: This parameter is a single Protection Authority flag field assigned to transmitted ICMP error messages (see Section 2.8). The PORT-AUTHORITY-ERROR value is selected from the set of values which constitute PORT-AUTHORITY-OUT. Means for selecting the PORT-AUTHORITY-ERROR value within a system are a local matter subject to local security policies. j. PORT-IMPLICIT-LABEL: This parameter specifies a single Classification Level and a Protection Authority flag fieldKent [Page 8]RFC 1108 U.S. DOD Security Option November 1991 (which may be null) to be associated with all unlabelled datagrams received via the port. This parameter is meaningful only if PORT-BSO-REQUIRED-RECEIVE = FALSE, otherwise receipt of an unlabelled datagram results in an error response. k. PORT-BSO-REQUIRED-RECEIVE: This parameter is a boolean which indicates whether all datagrams received via this network port must contain a Basic Security Option. l. PORT-BSO-REQUIRED-TRANSMIT: This parameter is a boolean which indicates whether all datagrams transmitted via this network port must contain a Basic Security Option. If this parameter is set to FALSE, then PORT-BSO-REQUIRED-RECEIVE should also be set to FALSE (to avoid communication failures resulting from asymmetric labelling constraints). In every intermediate or end system, the following relationship must hold for these parameters for all network interfaces. The symbol ">=" is interpreted relative to the linear ordering defined for security levels specified in Section 2.3 for the "LEVEL" parameters, and as set inclusion for the "AUTHORITY" parameters. SYSTEM-LEVEL-MAX >= PORT-LEVEL-MAX >= PORT-LEVEL-MIN >= SYSTEM-LEVEL-MIN SYSTEM-AUTHORITY-IN >= PORT-AUTHORITY-IN and SYSTEM-AUTHORITY-OUT >= PORT-AUTHORITY-OUT2.6. Configuration Considerations Systems which do not maintain separation for different security classification levels of data should have only trivial ranges for the LEVEL parameters, i.e., SYSTEM-LEVEL-MAX = PORT-LEVEL-MAX = PORT- LEVEL-MIN = SYSTEM-LEVEL-MIN. Systems which do maintain separation for different security classification levels of data may have non-trivial ranges for the LEVEL parameters, e.g., SYSTEM-LEVEL-MAX >= PORT-LEVEL-MAX >= PORT- LEVEL-MIN >= SYSTEM-LEVEL-MIN.2.7. Processing the Basic Security Option For systems implementing the Basic Security Option, the parameters PORT-BSO-REQUIRED-TRANSMIT and PORT-BSO-REQUIRED-RECEIVE are used to specify the local security policy with regard to requiring the presence of this option on transmitted and received datagrams, respectively, on a per-port basis. Each datagram transmitted orKent [Page 9]RFC 1108 U.S. DOD Security Option November 1991 received by the system must be processed in accordance with the per- port and system-wide security parameters configured for the system. Systems which process only Unclassified data may or may not be configured to generate the BSO on transmitted datagrams. Such systems also may or may not require a BSO to be present on received datagrams. However, all systems must be capable of accepting datagrams containing this option, irrespective of whether the option is processed or not. In general, systems which process classified data must generate this option for transmitted datagrams. The only exception to this rule arises in (dedicated or system high [DoD 5200.28]) networks where traffic may be implicitly labelled rather than requiring each attached system to generate explicit labels. If the local security policy permits receipt of datagrams without the option, each such datagram is presumed to be implicitly labelled based on the port via which the datagram is received. A per-port parameter (PORT- IMPLICIT-LABEL) specifies the label to be associated with such datagrams upon receipt. Note that a datagram transmitted in response to receipt of an implicitly labelled datagram, may, based on local policy, require an explicit Basic Security Option.2.7.1. Handling Unclassified Datagrams If an unmarked datagram is received via a network port for which PORT-BSO-REQUIRED = FALSE and PORT-IMPLICIT-LABEL = UNCLASSIFIED (NO FLAGS), the datagram shall be processed as though no Protection Authority Flags were set. Thus there are two distinct, valid representations for Unclassified datagrams to which no Protection Authority rules apply (an unmarked datagram as described here and a datagram containing an explicit BSO with Classification Level set to Unclassified and with no Protection Authority flags set). Note that a datagram also may contain a Basic Security Option in which the Classification Level is Unclassified and one or more Protection Authority Field Flags are set. Such datagrams are explicitly distinct from the equivalence class noted above (datagrams marked Unclassified with no Protection Authority field flags set and datagrams not containing a Basic Security Option).2.7.2. Input Processing Upon receipt of any datagram a system compliant with this RFC must perform the following actions. First, if PORT-BSO-REQUIRED-RECEIVE = TRUE for this port, then any received datagram must contain a Basic Security Option and a missing BSO results in an ICMP error response as specified in Section 2.8.1. A received datagram which contains a Basic Security Option must be processed as described below. ThisKent [Page 10]RFC 1108 U.S. DOD Security Option November 1991 algorithm assumes that the IP header checksum has already been verified and that, in the course of processing IP options, this option has been encountered. The value of the Classification Level field from the option will be designated "DG-LEVEL" and the value of the Protection Authority Flags field will be designated "DG- AUTHORITY." Step 1. Check that DG-LEVEL is a valid security classification level, i.e., it must be one of the (non-reserved) values from Table 1. If this test fails execute the out-of-range procedure in Section 2.8.1. Step 2. Check that PORT-LEVEL-MAX >= DG-LEVEL. If this test fails, execute out-of-range procedure specified in Section 2.8.2. Step 3. Check that DG-AUTHORITY =< PORT-AUTHORITY-IN. If this test fails, execute out-of-range procedure specified in Section 2.8.2.2.7.3. Output Processing Any system which implements the Basic Security Option must adhere to a fundamental rule with regard to transmission of datagrams, i.e., no datagram shall be transmitted with a Basic Security Option the value of which is outside of the range for which the system is configured. Thus for every datagram transmitted by a system the following must hold: PORT-LEVEL-MAX >= DG-LEVEL >= PORT-LEVEL-MIN and DG-AUTHORITY =< PORT-AUTHORITY-OUT. It is a local matter as to what procedures are followed by a system which detects at attempt to transmit a datagram for which these relationships do not hold. If a port is configured to allow both labelled and unlabelled datagrams (PORT-BSO-REQUIRED-TRANSMIT = FALSE) to be transmitted, the question arises as to whether a label should be affixed. In recognition of the lack of widespread implementation or use of this option, especially in unclassified networks, this RFC recommends that the default be transmission of unlabelled datagrams. If the destination requires all datagrams to be labelled on input, then it will respond with an ICMP error message (see Section 2.8.1) and the originator can respond by labelling successive packets transmitted to this destination. To support this mode of operation, a system which allows transmission of both labelled and unlabelled datagrams must maintain state information (a cache) so that the system can associate the use of labels with specific destinations, e.g., in response to receipt of an ICMP error message as specified in Section 2.8.1. This requirement for maintaining a per-destination cache is very much analogous toKent [Page 11]RFC 1108 U.S. DOD Security Option November 1991 that imposed for processing the IP source route option or for maintaining first hop routing information (RFC 1122). This RFC does not specify which protocol module must maintain the per-destination cache (e.g., IP vs. TCP or UDP) but security engineering constraints may dictate an IP implementation in trusted systems. This RFC also does not specify a cache maintenance algorithm, though use of a timer and activity flag may be appropriate.2.8. Error Procedures Datagrams received with errors in the Basic Security Option or which are out of range for the network port via which they are received, should not be delivered to user processes. Local policy will specify whether logging and/or notification of a system security officer is required in response to receipt of such datagrams. The following are the least restrictive actions permitted by this protocol. Individual
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -