📄 rfc1583.txt
字号:
Moy [Page 5]RFC 1583 OSPF Version 2 March 1994 route to each destination in the Autonomous System. Externally derived routing information appears on the tree as leaves. OSPF calculates separate routes for each Type of Service (TOS). When several equal-cost routes to a destination exist, traffic is distributed equally among them. The cost of a route is described by a single dimensionless metric. OSPF allows sets of networks to be grouped together. Such a grouping is called an area. The topology of an area is hidden from the rest of the Autonomous System. This information hiding enables a significant reduction in routing traffic. Also, routing within the area is determined only by the area's own topology, lending the area protection from bad routing data. An area is a generalization of an IP subnetted network. OSPF enables the flexible configuration of IP subnets. Each route distributed by OSPF has a destination and mask. Two different subnets of the same IP network number may have different sizes (i.e., different masks). This is commonly referred to as variable length subnetting. A packet is routed to the best (i.e., longest or most specific) match. Host routes are considered to be subnets whose masks are "all ones" (0xffffffff). All OSPF protocol exchanges are authenticated. This means that only trusted routers can participate in the Autonomous System's routing. A variety of authentication schemes can be used; a single authentication scheme is configured for each area. This enables some areas to use much stricter authentication than others. Externally derived routing data (e.g., routes learned from the Exterior Gateway Protocol (EGP)) is passed transparently throughout the Autonomous System. This externally derived data is kept separate from the OSPF protocol's link state data. Each external route can also be tagged by the advertising router, enabling the passing of additional information between routers on the boundaries of the Autonomous System. 1.2. Definitions of commonly used terms This section provides definitions for terms that have a specific meaning to the OSPF protocol and that are used throughout the text. The reader unfamiliar with the Internet Protocol Suite is referred to [RS-85-153] for an introduction to IP.Moy [Page 6]RFC 1583 OSPF Version 2 March 1994 Router A level three Internet Protocol packet switch. Formerly called a gateway in much of the IP literature. Autonomous System A group of routers exchanging routing information via a common routing protocol. Abbreviated as AS. Interior Gateway Protocol The routing protocol spoken by the routers belonging to an Autonomous system. Abbreviated as IGP. Each Autonomous System has a single IGP. Separate Autonomous Systems may be running different IGPs. Router ID A 32-bit number assigned to each router running the OSPF protocol. This number uniquely identifies the router within an Autonomous System. Network In this memo, an IP network/subnet/supernet. It is possible for one physical network to be assigned multiple IP network/subnet numbers. We consider these to be separate networks. Point-to-point physical networks are an exception - they are considered a single network no matter how many (if any at all) IP network/subnet numbers are assigned to them. Network mask A 32-bit number indicating the range of IP addresses residing on a single IP network/subnet/supernet. This specification displays network masks as hexadecimal numbers. For example, the network mask for a class C IP network is displayed as 0xffffff00. Such a mask is often displayed elsewhere in the literature as 255.255.255.0. Multi-access networks Those physical networks that support the attachment of multiple (more than two) routers. Each pair of routers on such a network is assumed to be able to communicate directly (e.g., multi-drop networks are excluded). Interface The connection between a router and one of its attached networks. An interface has state information associated with it, which is obtained from the underlying lower level protocols and the routing protocol itself. An interface to a network has associated with it a single IP address andMoy [Page 7]RFC 1583 OSPF Version 2 March 1994 mask (unless the network is an unnumbered point-to-point network). An interface is sometimes also referred to as a link. Neighboring routers Two routers that have interfaces to a common network. On multi-access networks, neighbors are dynamically discovered by OSPF's Hello Protocol. Adjacency A relationship formed between selected neighboring routers for the purpose of exchanging routing information. Not every pair of neighboring routers become adjacent. Link state advertisement Describes the local state of a router or network. This includes the state of the router's interfaces and adjacencies. Each link state advertisement is flooded throughout the routing domain. The collected link state advertisements of all routers and networks forms the protocol's topological database. Hello Protocol The part of the OSPF protocol used to establish and maintain neighbor relationships. On multi-access networks the Hello Protocol can also dynamically discover neighboring routers. Designated Router Each multi-access network that has at least two attached routers has a Designated Router. The Designated Router generates a link state advertisement for the multi-access network and has other special responsibilities in the running of the protocol. The Designated Router is elected by the Hello Protocol. The Designated Router concept enables a reduction in the number of adjacencies required on a multi-access network. This in turn reduces the amount of routing protocol traffic and the size of the topological database. Lower-level protocols The underlying network access protocols that provide services to the Internet Protocol and in turn the OSPF protocol. Examples of these are the X.25 packet and frame levels for X.25 PDNs, and the ethernet data link layer for ethernets.Moy [Page 8]RFC 1583 OSPF Version 2 March 1994 1.3. Brief history of link-state routing technology OSPF is a link state routing protocol. Such protocols are also referred to in the literature as SPF-based or distributed- database protocols. This section gives a brief description of the developments in link-state technology that have influenced the OSPF protocol. The first link-state routing protocol was developed for use in the ARPANET packet switching network. This protocol is described in [McQuillan]. It has formed the starting point for all other link-state protocols. The homogeneous Arpanet environment, i.e., single-vendor packet switches connected by synchronous serial lines, simplified the design and implementation of the original protocol. Modifications to this protocol were proposed in [Perlman]. These modifications dealt with increasing the fault tolerance of the routing protocol through, among other things, adding a checksum to the link state advertisements (thereby detecting database corruption). The paper also included means for reducing the routing traffic overhead in a link-state protocol. This was accomplished by introducing mechanisms which enabled the interval between link state advertisement originations to be increased by an order of magnitude. A link-state algorithm has also been proposed for use as an ISO IS-IS routing protocol. This protocol is described in [DEC]. The protocol includes methods for data and routing traffic reduction when operating over broadcast networks. This is accomplished by election of a Designated Router for each broadcast network, which then originates a link state advertisement for the network. The OSPF subcommittee of the IETF has extended this work in developing the OSPF protocol. The Designated Router concept has been greatly enhanced to further reduce the amount of routing traffic required. Multicast capabilities are utilized for additional routing bandwidth reduction. An area routing scheme has been developed enabling information hiding/protection/reduction. Finally, the algorithm has been modified for efficient operation in TCP/IP internets. 1.4. Organization of this document The first three sections of this specification give a general overview of the protocol's capabilities and functions. SectionsMoy [Page 9]RFC 1583 OSPF Version 2 March 1994 4-16 explain the protocol's mechanisms in detail. Packet formats, protocol constants and configuration items are specified in the appendices. Labels such as HelloInterval encountered in the text refer to protocol constants. They may or may not be configurable. The architectural constants are explained in Appendix B. The configurable constants are explained in Appendix C. The detailed specification of the protocol is presented in terms of data structures. This is done in order to make the explanation more precise. Implementations of the protocol are required to support the functionality described, but need not use the precise data structures that appear in this memo.2. The Topological Database The Autonomous System's topological database describes a directed graph. The vertices of the graph consist of routers and networks. A graph edge connects two routers when they are attached via a physical point-to-point network. An edge connecting a router to a network indicates that the router has an interface on the network. The vertices of the graph can be further typed according to function. Only some of these types carry transit data traffic; that is, traffic that is neither locally originated nor locally destined. Vertices that can carry transit traffic are indicated on the graph by having both incoming and outgoing edges. Vertex type Vertex name Transit? _____________________________________ 1 Router yes 2 Network yes 3 Stub network no Table 1: OSPF vertex types. OSPF supports the following types of physical networks:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -