📄 rfc1422.txt
字号:
validate the identity of users, these requirements must be specified. Since all PCAs are required to cooperate in the resolution of potential DN conflicts, each PCA is required to specify the procedure it will employ to resolve such conflicts. If the PCA imposes a maximum validity interval for the CA certificates it issues, and/or for user (or subordinate CA) certificates issued by the CAs it certifies, then these restrictions must be specified. 5. CRL Management- Each PCA must specify the frequency with which it will issue scheduled CRLs. It also must specify any constraints it imposes on the frequency of scheduled issue of CRLs by the CAs it certifies, and by subordinate CAs. Both maximum and minimum constraints should be specified. Since the IPRA policy calls for each CRL issued by a CA to be forwarded to the cognizant PCA, each PCA must specify a mailbox address to which CRLs are to be transmitted. The PCA also must specify a mailbox address for CRL queries. If the PCA offers any additional CRL management services, e.g., archiving of old CRLs, then procedures for invoking these services must be specified. If the PCA requires CAs to provide any additional CRL management services, such services must be specified here. 6. Naming Conventions- If the PCA imposes any conventions on DNs used by the CAs it certifies, or by entities certified by these CAs, these conventions must be specified. If any semantics are associated with such conventions, these semantics must be specified. 7. Business Issues- If a legal agreement must be executed between a PCA and the CAs it certifies, reference to that agreement must be noted, but the agreement itself ought not be a part of the policy statement. Similarly, if any fees are charged by the PCA this should be noted, but the fee structure per se ought not be part of this policy statement. 8. Other- Any other topics the PCA deems relevant to a statement of its policy can be included. However, the PCA should be aware that a policy statement is considered to be an immutable, long lived document and thus considerable care should be exercised in deciding what material is to be included in the statement.Kent [Page 19]RFC 1422 Certificate-Based Key Management February 1993 3.4.4 Certification Authorities In X.509 the term "certification authority" is defined as "an authority trusted by one or more users to create and assign certificates". X.509 imposes few constraints on CAs, but practical implementation of a worldwide certification system requires establishment of technical and procedural conventions by which all CAs are expected to abide. Such conventions are established throughout this document. All CAs are required to maintain a database of the DNs which they have certified and to take measures to ensure that they do not certify duplicate DNs, either for users or for subordinate CAs. It is critical that the private component of a CA be afforded a high level of security, otherwise the authenticity guarantee implied by certificates signed by the CA is voided. Some PCAs may impose stringent requirements on CAs within their purview to ensure that a high level of security is afforded the certificate signing process, but not all PCAs are expected to impose such constraints. 3.4.4.1 Organizational CAs Many of the CAs certified by PCAs are expected to represent organizations. A wide range of organizations are encompassed by this model: commercial, governmental, educational, non-profit, professional societies, etc. The common thread is that the entities certified by these CAs have some form of affiliation with the organization. The object classes for organizations, organizational units, organizational persons, organizational roles, etc., as defined in X.521, form the models for entities certified by such CAs. The affiliation implied by organizational certification motivates the DN subordination requirement cited in Section 3.4.2.4. As an example, an organizational user certificate might contain a subject DN of the form: C = "US" SP = "Massachusetts" L = "Cambridge" O = "Bolt Beranek and Newman" OU = "Communications Division" CN = "Steve Kent". The issuer of this certificate might have a DN of the form: C = "US" SP = "Massachusetts" L = "Cambridge" O= "Bolt Beranek and Newman". Note that the organizational unit attribute is omitted from the issuer DN, implying that there is no CA dedicated to the "Communications Division". 3.4.4.2 Residential CAs Users may wish to obtain certificates which do not imply any organizational affiliation but which do purport to accurately and uniquely identify them. Such users can be registered as residential persons and the DN of such a user should be consistent with theKent [Page 20]RFC 1422 Certificate-Based Key Management February 1993 attributes of the corresponding X.521 object class. Over time we anticipate that such users will be accommodated by civil government entities who will assume electronic certification responsibility at geographically designated points in the naming hierarchy. Until civil authorities are prepared to issue certificates of this form, residential user CAs will accommodate such users. Because residential CAs may be operated under the auspices of multiple PCAs, there is a potential for the same residential CA DN to be assumed by several distinct entities. This represents the one exception to the rule articulated throughout this document that no two entities may have the same DN. This conflict is tolerated so as to allow residential CAs to be established offering different policies. Two requirements are levied upon residential CAs as a result: (1) residential CAs must employ the residential DN conflict detection database maintained by the IPRA, and (2) residential CAs must coordinate to ensure that they do not assign duplicate certificate serial numbers. As an example, a residential user certificate might include a subject name of the form: C = "US" SP = "Massachusetts" L = "Boston" PA = "19 North Square" CN = "Paul Revere." The issuer of that certificate might have a DN of the form: C = "US" SP = "Massachusetts" L = "Boston". Note that the issuer DN is superior to the subject DN, as required by the IPRA policy described earlier. 3.4.4.3 PERSONA CAs One or more CAs will be established to accommodate users who wish to conceal their identities while making use of PEM security features, e.g., to preserve the anonymity offered by "arbitrary" mailbox names in the current mail environment. In this case the certifying authority is explicitly NOT vouching for the identity of the user. All such certificates are issued under a PERSONA CA, subordinate to a PCA with a PERSONA policy, to warn users explicitly that the subject DN is NOT a validated user identity. To minimize the possibility of syntactic confusion with certificates which do purport to specify an authenticated user identity, a PERSONA certificate is issued as a form of organizational user certificate, not a residential user certificate. There are no explicit, reserved words used to identify PERSONA user certificates. A CA issuing PERSONA certificates must institute procedures to ensure that it does not issue the same subject DN to multiple users (a constraint required for all certificates of any type issued by any CA). There are no requirements on an issuer of PERSONA certificates to maintain any other records that might bind the true identity of the subject to his certificate. However, a CA issuing suchKent [Page 21]RFC 1422 Certificate-Based Key Management February 1993 certificates must establish procedures (not specified in this document) in order to allow the holder of a PERSONA certificate to request that his certificate be revoked (i.e., listed on a CRL). As an example, a PERSONA user certificate might include a subject DN of the form: C = "US" SP = "Massachusetts" L = "Boston" O = "Pseudonyms R US" CN = "Paul Revere." The issuer of this certificate might have a DN of the form: C = "US" SP = "Massachusetts" L = "Boston" O = "Pseudonyms R US". Note the differences between this PERSONA user certificate for "Paul Revere" and the corresponding residential user certificate for the same common name. 3.4.4.4 CA Responsibilities for CRL Management As X.500 directory servers become available, CRLs should be maintained and accessed via these servers. However, prior to widespread deployment of X.500 directories, this document adopts some additional requirements for CRL management by CAs and PCAs. As per X.509, each CA is required to maintain a CRL (in the format specified by this document in Appendix A) which contains entries for all certificates issued and later revoked by the CA. Once a certificate is entered on a CRL it remains there until the validity interval expires. Each PCA is required to maintain a CRL for revoked CA certificates within its domain. The interval at which a CA issues a CRL is not fixed by this document, but the PCAs may establish minimum and maximum intervals for such issuance. As noted earlier, each PCA will provide access to a database containing CRLs issued by the IPRA, PCAs, and all CAs. In support of this requirement, each CA must supply its current CRL to its PCA in a fashion consistent with CRL issuance rules imposed by the PCA and with the next scheduled issue date specified by the CA (see Section 3.5.1). CAs may distribute CRLs to subordinate UAs using the CRL processing type available in PEM messages (see RFC 1421). CAs also may provide access to CRLs via the database mechanism described in RFC 1424 and alluded to immediately above. 3.5 Certificate Revocation 3.5.1 X.509 CRLs X.509 states that it is a CA's responsibility to maintain: "a time- stamped list of the certificates it issued which have been revoked." There are two primary reasons for a CA to revoke a certificate, i.e., suspected compromise of a private component (invalidating the corresponding public component) or change of user affiliation (invalidating the DN). The use of Certificate Revocation Lists (CRLs) as defined in X.509 is one means of propagating informationKent [Page 22]RFC 1422 Certificate-Based Key Management February 1993 relative to certificate revocation, though it is not a perfect mechanism. In particular, an X.509 CRL indicates only the age of the information contained in it; it does not provide any basis for determining if the list is the most current CRL available from a given CA. The proposed architecture establishes a format for a CRL in which not only the date of issue, but also the next scheduled date of issue is specified. Adopting this convention, when the next scheduled issue date arrives a CA (Throughout this section, when the term "CA" is employed, it should be interpreted broadly, to include the IPRA and PCAs as well as organizational, residential, and PERSONA CAs.) will issue a new CRL, even if there are no changes in the list of entries. In this fashion each CA can independently establish and advertise the frequency with which CRLs are issued by that CA. Note that this does not preclude CRL issuance on a more frequent basis, e.g., in case of some emergency, but no system-wide mechanisms are architected for alerting users that such an unscheduled issuance has taken place. This scheduled CRL issuance convention allows users (UAs) to determine whether a given CRL is "out of date," a facility not available from the (1988) X.509 CRL format. The description of CRL management in the text and the format for CRLs specified in X.509 (1988) are inconsistent. For example, the latter associates an issuer distinguished name with each revoked certificate even though the text states that a CRL contains entries for only a single issuer (which is separately specified in the CRL format). The CRL format adopted for PEM is a (simplified) format consistent with the text of X.509, but not identical to the accompanying format. The ASN.1 format for CRLs used with PEM is provided in Appendix A. X.509 also defines a syntax for the "time-stamped list of revoked certificates representing other CAs." This syntax, the "AuthorityRevocationList" (ARL) allows the list t
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -