📄 rfc1422.txt
字号:
of the policies under which certificates are issued. Specifically, the architecture proposes a system in which user (or mailing list) certificates represent the leaves in a certification hierarchy. This certification hierarchy is largely isomorphic to the X.500 directory naming hierarchy, with two exceptions: the IPRA forms the root of the tree (the root of the X.500 DIT is not instantiated as a node), and a number of Policy Certification Authorities (PCAs) form the "roots" of subtrees, each of which represents a different certification policy. Not every level in the directory hierarchy need correspond to a certification authority. For example, the appearance of geographic entities in a distinguished name (e.g., countries, states, provinces, localities) does not require that various governments become certifying authorities in order to instantiate this architecture. However, it is anticipated that, over time, a number of such points in the hierarchy will be instantiated as CAs in order to simplify later transition of management to appropriate governmental authorities. These conventions minimize the complexity of validating user certificates, e.g., by making explicit the relationship between aKent [Page 5]RFC 1422 Certificate-Based Key Management February 1993 certificate issuer and the user (via the naming hierarchy). Note that in this architecture, only PCAs may be certified by the IPRA, and every CA's certification path can be traced to a PCA, through zero or more CAs. If a CA is certified by more than one PCA, each certificate issued by a PCA for the CA must contain a distinct public component. These conventions result in a certification hierarchy which is a compatible subset of that permitted under X.509, with respect to both syntax and semantics. Although the key management architecture described in this document has been designed primarily to support privacy enhanced mail, this infrastructure also may, in principle, be used to support X.400 mail security facilities (as per 1988 X.411) and X.500 directory authentication facilities. Thus, establishment of this infrastructure paves the way for use of these and other OSI protocols in the Internet in the future. In the future, these certificates also may be employed in the provision of security services in other protocols in the TCP/IP and OSI suites as well. 3.2 Relation to X.509 Architecture CCITT 1988 Recommendation X.509, "The Directory - Authentication Framework", defines a framework for authentication of entities involved in a distributed directory service. Strong authentication, as defined in X.509, is accomplished with the use of public-key cryptosystems. Unforgeable certificates are generated by certification authorities; these authorities may be organized hierarchically, though such organization is not required by X.509. There is no implied mapping between a certification hierarchy and the naming hierarchy imposed by directory system naming attributes. This document interprets the X.509 certificate mechanism to serve the needs of PEM in the Internet environment. The certification hierarchy proposed in this document in support of privacy enhanced mail is intentionally a subset of that allowed under X.509. This certification hierarchy also embodies semantics which are not explicitly addressed by X.509, but which are consistent with X.509 precepts. An overview of the rationale for these semantics is provided in Section 1. 3.3 Certificate Definition Certificates are central to the key management architecture for X.509 and PEM. This section provides an overview of the syntax and a description of the semantics of certificates. Appendix A includes the ASN.1 syntax for certificates. A certificate includes the following contents:Kent [Page 6]RFC 1422 Certificate-Based Key Management February 1993 1. version 2. serial number 3. signature (algorithm ID and parameters) 4. issuer name 5. validity period 6. subject name 7. subject public key (and associated algorithm ID) 3.3.1 Version Number The version number field is intended to facilitate orderly changes in certificate formats over time. The initial version number for certificates used in PEM is the X.509 default which has a value of zero (0), indicating the 1988 version. PEM implementations are encouraged to accept later versions as they are endorsed by CCITT/ISO. 3.3.2 Serial Number The serial number field provides a short form, unique identifier for each certificate generated by an issuer. An issuer must ensure that no two distinct certificates with the same issuer DN contain the same serial number. (This requirement must be met even when the certification function is effected on a distributed basis and/or when the same issuer DN is certified under two different PCAs. This is especially critical for residential CAs certified under different PCAs.) The serial number is used in CRLs to identify revoked certificates, as described in Section 3.4.3.4. Although this attribute is an integer, PEM UA processing of this attribute need not involve any arithmetic operations. All PEM UA implementations must be capable of processing serial numbers at least 128 bits in length, and size-independent support serial numbers is encouraged. 3.3.3 Signature This field specifies the algorithm used by the issuer to sign the certificate, and any parameters associated with the algorithm. (The certificate signature is appended to the data structure, as defined by the signature macro in X.509. This algorithm identification information is replicated with the signature.) The signature is validated by the UA processing a certificate, in order to determine that the integrity of its contents have not been modified subsequentKent [Page 7]RFC 1422 Certificate-Based Key Management February 1993 to signing by a CA (IPRA, or PCA). In this context, a signature is effected through the use of a Certificate Integrity Check (CIC) algorithm and a public-key encryption algorithm. RFC 1423 contains the definitions and algorithm IDs for signature algorithms employed in this architecture. 3.3.4 Subject Name A certificate provides a representation of its subject's identity in the form of a Distinguished Name (DN). The fundamental binding ensured by the key management architecture is that between the public component and the user's identity in this form. A distinguished name is an X.500 directory system concept and if a user is already registered in an X.500 directory, his distinguished name is defined via that registration. Users who are not registered in a directory should keep in mind likely directory naming structure (schema) when selecting a distinguished name for inclusion in a certificate. 3.3.5 Issuer Name A certificate provides a representation of its issuer's identity, in the form of a Distinguished Name. The issuer identification is used to select the appropriate issuer public component to employ in performing certificate validation. (If an issuer (CA) is certified by multiple PCAs, then the issuer DN does not uniquely identify the public component used to sign the certificate. In such circumstances it may be necessary to attempt certificate validation using multiple public components, from certificates held by the issuer under different PCAs. If the 1992 version of a certificate is employed, the issuer may employ distinct issuer UIDs in the certificates it issues, to further facilitate selection of the right issuer public component.) The issuer is the certifying authority (IPRA, PCA or CA) who vouches for the binding between the subject identity and the public key contained in the certificate. 3.3.6 Validity Period A certificate carries a pair of date and time indications, indicating the start and end of the time period over which a certificate is intended to be used. The duration of the interval may be constant for all user certificates issued by a given CA or it might differ based on the nature of the user's affiliation. For example, an organization might issue certificates with shorter intervals to temporary employees versus permanent employees. It is recommended that the UTCT (Coordinated Universal Time) values recorded here specify granularity to no more than the minute, even though finer granularity can be expressed in the format. (Implementors are warned that no DER is defined for UTCT in X.509, thus transformation betweenKent [Page 8]RFC 1422 Certificate-Based Key Management February 1993 local and transfer syntax must be performed carefully, e.g., when computing the hash value for a certificate. For example, a UTCT value which includes explict, zero values for seconds would not produce the same hash value as one in which the seconds were omitted.) It also recommended that all times be expressed as Greenwich Mean Time (Zulu), to simplify comparisons and avoid confusion relating to daylight savings time. Note that UTCT expresses the value of a year modulo 100 (with no indication of century), hence comparisons involving dates in different centuries must be performed with care. The longer the interval, the greater the likelihood that compromise of a private component or name change will render it invalid and thus require that the certificate be revoked. Once revoked, the certificate must remain on the issuer's CRL (see Section 3.4.3.4) until the validity interval expires. PCAs may impose restrictions on the maximum validity interval that may be elected by CAs operating in their certification domain (see Appendix B). 3.3.7 Subject Public Key A certificate carries the public component of its associated subject, as well as an indication of the algorithm, and any algorithm parameters, with which the public component is to be used. This algorithm identifier is independent of that which is specified in the signature field described above. RFC 1423 specifies the algorithm identifiers which may be used in this context. 3.4 Roles and Responsibilities One way to explain the architecture proposed by this document is to examine the roles which are defined for various entities in the architecture and to describe what is required of each entity in order for the proposed system to work properly. The following sections identify four types of entities within this architecture: users and user agents, the Internet Policy Registration Authority, Policy Certification Authorities, and other Certification Authorities. For each type of entity, this document specifies the procedures which the entity must execute as part of the architecture and the responsibilities the entity assumes as a function of its role in the architecture. 3.4.1 Users and User Agents The term User Agent (UA) is taken from CCITT X.400 Message Handling Systems (MHS) Recommendations, which define it as follows: "In the context of message handling, the functional object, a component of MHS, by means of which a single direct user engages in messageKent [Page 9]RFC 1422 Certificate-Based Key Management February 1993
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -